Concha Gonzalez-Garcia

(YITP Stony Brook & ICREA U. Barcelona)

UB, June 1th, 2016

Neutrino Flavour Transition: Data and Interpretation
Some Implications for/from Cosmology

http://www.nu-fit.org
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

The Big Bang
\[\rho_\nu = 330/\text{cm}^3 \]
\[\rho_\nu = 0.0004 \text{ eV} \]

SN1987
\[E_\nu \sim \text{MeV} \]

ExtraGalactic
\[E_\nu \gtrsim 30 \text{TeV} \]

Sources of \(\nu 's \)

The Sun
\[\nu_e \]
\[\Phi_\nu^{\text{Earth}} = 6 \times 10^{10} \nu/\text{cm}^2\text{s} \]
\[E_\nu \sim 0.1-20 \text{ MeV} \]

Atmospheric \(\nu 's \)
\[\nu_e, \nu_\mu, \overline{\nu}_e, \overline{\nu}_\mu \]
\[\Phi_\nu \sim 1 \nu/\text{cm}^2\text{s} \]

Earth’s radioactivity
\[\overline{\nu}_e \]
\[\Phi_\nu \sim 6 \times 10^6 \nu/\text{cm}^2\text{s} \]

Human Body
\[\Phi_\nu = 340 \times 10^6 \nu/\text{day} \]

Nuclear Reactors
\[E_\nu \sim \text{few MeV} \]

Accelerators
\[E_\nu \sim 0.3-30 \text{ GeV} \]

Concha Gonzalez-Garcia

- Fermilab
- CERN
- KEK
Neutrinos in the Standard Model

The SM is a gauge theory based on the symmetry group

\[SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM} \]

With three generation of fermions

<table>
<thead>
<tr>
<th>(1, 2) (-\frac{1}{2})</th>
<th>(3, 2) (\frac{1}{2})</th>
<th>(1, 1) (-1)</th>
<th>(3, 1) (\frac{2}{3})</th>
<th>(3, 1) (-\frac{1}{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\nu_e)) _L</td>
<td>((u^i)) _L</td>
<td>((e_R))</td>
<td>((u^i_R))</td>
<td>((d^i_R))</td>
</tr>
<tr>
<td>((\nu_\mu)) _L</td>
<td>((c^i)) _L</td>
<td>((\mu_R))</td>
<td>((c^i_R))</td>
<td>((s^i_R))</td>
</tr>
<tr>
<td>((\nu_\tau)) _L</td>
<td>((t^i)) _L</td>
<td>((\tau_R))</td>
<td>((t^i_R))</td>
<td>((b^i_R))</td>
</tr>
</tbody>
</table>

There is no \(\nu_R \)
Neutrinos in the Standard Model

The SM is a gauge theory based on the symmetry group

\[SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM} \]

With three generation of fermions

<table>
<thead>
<tr>
<th>(1, 2) (\frac{1}{2})</th>
<th>(3, 2) (\frac{1}{6})</th>
<th>(1, 1) (\frac{1}{2})</th>
<th>(3, 1) (\frac{2}{3})</th>
<th>(3, 1) (\frac{1}{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_e)</td>
<td>(u^i)</td>
<td>(e_R)</td>
<td>(u^i_R)</td>
<td>(d^i_R)</td>
</tr>
<tr>
<td>(e)</td>
<td>(d^i)</td>
<td>(\mu_R)</td>
<td>(c^i_R)</td>
<td>(s^i_R)</td>
</tr>
<tr>
<td>(\nu_\mu)</td>
<td>(c^i)</td>
<td>(\tau_R)</td>
<td>(t^i_R)</td>
<td>(b^i_R)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>(s^i)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three and only three

\[\text{Accidental global symmetry: } B \times L_e \times L_\mu \times L_\tau \quad \text{(hence } L = L_e + L_\mu + L_\tau) \]

\[\nu \text{ strictly massless} \]
• By 2016 we have observed with high (or good) precision:

* Atmospheric ν_μ & $\bar{\nu}_\mu$ disappear most likely to ν_τ (SK, MINOS, ICECUBE)
* Accel. ν_μ & $\bar{\nu}_\mu$ disappear at $L \sim 300/800$ Km (K2K, T2K/ MINOS, NOνA)
* Some accelerator ν_μ appear as ν_τ at $L \sim 700$ Km (OPERA)
* Some accelerator ν_μ appear as ν_e at $L \sim 300/800$ Km (T2K, MINOS, NOνA)
* Solar ν_e convert to ν_μ/ν_τ (Cl, Ga, SK, SNO, Borexino)
* Reactor $\bar{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
* Reactor $\bar{\nu}_e$ disappear at $L \sim 1$ Km (D-Chooz, Daya Bay, Reno)
By 2016 we have observed with high (or good) precision:

- Atmospheric ν_μ & $\bar{\nu}_\mu$ disappear most likely to ν_τ (SK, MINOS, ICECUBE)
- Accel. ν_μ & $\bar{\nu}_\mu$ disappear at $L \sim 300/800$ Km (K2K, T2K/ MINOS, NOνA)
- Some accelerator ν_μ appear as ν_τ at $L \sim 700$ Km (OPERA)
- Some accelerator ν_μ appear as ν_e at $L \sim 300/800$ Km (T2K, MINOS, NOνA)
- Solar ν_e convert to ν_μ/ν_τ (Cl, Ga, SK, SNO, Borexino)
- Reactor $\bar{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
- Reactor $\bar{\nu}_e$ disappear at $L \sim 1$ Km (D-Chooz, Daya Bay, Reno)

All this implies that L_α are violated and There is Physics Beyond SM
The New Minimal Standard Model

• Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino

 * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$:
 \[\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \nu_L \nu_R + h.c. \]

 * NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$
 \[\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2} M_{\nu} \nu_L^{\dagger} \nu_L^C + h.c. \]
The New Minimal Standard Model

• Minimal Extension to allow for LFV ⇒ give Mass to the Neutrino

* Introduce ν_R AND impose L conservation ⇒ Dirac $\nu \neq \nu^c$:
\[
\mathcal{L} = \mathcal{L}_{SM} - M_\nu \bar{\nu}_L \nu_R + h.c.
\]

* NOT impose L conservation ⇒ Majorana $\nu = \nu^c$
\[
\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2} M_\nu \bar{\nu}_L \nu^c_L + h.c.
\]

• The charged current interactions of leptons are not diagonal (same as quarks)

\[
\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{i,j} \left(U^{i,j}_{\text{LEP}} \bar{l}_i \gamma^\mu L \nu^j + U^{i,j}_{\text{CKM}} \bar{U}^i \gamma^\mu L D^j \right) + h.c.
\]
ν Mass Oscillations in Vacuum

- If neutrinos have mass, a weak eigenstate $|\nu_\alpha\rangle$ produced in $l_\alpha + N \rightarrow \nu_\alpha + N'$ is a linear combination of the mass eigenstates ($|\nu_i\rangle$): $|\nu_\alpha\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i\rangle$

- After a distance L it can be detected with flavour β with probability

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j \neq i}^{n} \text{Re}[U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*] \sin^2 \left(\frac{\Delta_{ij}}{2} \right) + 2 \sum_{j \neq i}^{n} \text{Im}[U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*] \sin (\Delta_{ij})$$

$$\Delta_{ij} = \frac{(E_i - E_j)L}{2} = 1.27 \frac{(m_i^2 - m_j^2)}{\text{eV}^2} \frac{L/E}{\text{Km/GeV}}$$
If neutrinos have mass, a weak eigenstate $|\nu_\alpha\rangle$ produced in $l_\alpha + N \rightarrow \nu_\alpha + N'$ is a linear combination of the mass eigenstates ($|\nu_i\rangle$):

$$|\nu_\alpha\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i\rangle$$

After a distance L it can be detected with flavour β with probability

$$P_{\alpha \beta} = \delta_{\alpha \beta} - 4 \sum_{j \neq i}^{n} \text{Re}[U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*] \sin^2 \left(\frac{\Delta_{ij}}{2} \right) + 2 \sum_{j \neq i}^{n} \text{Im}[U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*] \sin (\Delta_{ij})$$

$$\Delta_{ij} = \frac{(E_i - E_j) L}{2} = 1.27 \frac{(m_i^2 - m_j^2)}{eV^2} \frac{L / E}{\text{Km/GeV}}$$

No information on ν mass scale nor Majorana versus Dirac
Mass Oscillations in Vacuum

- If neutrinos have mass, a weak eigenstate $|\nu_\alpha\rangle$ produced in $l_\alpha + N \rightarrow \nu_\alpha + N'$ is a linear combination of the mass eigenstates ($|\nu_i\rangle$):

 $$|\nu_\alpha\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i\rangle$$

- After a distance L it can be detected with flavour β with probability

 $$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j \neq i} \text{Re}[U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*] \sin^2 \left(\frac{\Delta_{ij}}{2} \right) + 2 \sum_{j \neq i} \text{Im}[U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*] \sin (\Delta_{ij})$$

 $$\frac{\Delta_{ij}}{2} = \frac{(E_i - E_j)L}{2} = 1.27 \frac{(m_i^2 - m_j^2)}{eV^2 \text{Km/GeV}} \frac{L}{E}$$

 No information on ν mass scale nor Majorana versus Dirac

- For 2-ν:

 $$P_{\alpha\alpha} = 1 - P_{osc}$$

 $$P_{osc} = \sin^2 (2\theta) \sin^2 \left(1.27 \frac{\Delta m^2 L}{E} \right)$$

 Disappear

 Appear
Matter Effects

• If ν cross matter regions (Sun, Earth...) it interacts *coherently*

 – But Different flavours have different interactions :

 ⇒ Effective potential in ν evolution : $V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^\nu = -\Delta V^{\bar{\nu}} = \sqrt{2}GFN_e$

 ⇒ *Modification of mixing angle and oscillation wavelength* ≡ MSW effect

• The mixing angle in matter

\[
\sin(2\theta_m) = \frac{\Delta m^2 \sin(2\theta)}{\sqrt{(\Delta m^2 \cos(2\theta) - 2E\Delta V)^2 + (\Delta m^2 \sin(2\theta))^2}}
\]

• For solar neutrinos in adiabatic regime

\[
P(\nu_e \rightarrow \nu_e) = \frac{1}{2} [1 + \cos(2\theta_m) \cos(2\theta)]
\]
By 2016 we have observed with high (or good) precision:

* Atmospheric ν_μ & $\bar{\nu}_\mu$ disappear most likely to ν_τ (SK, MINOS, ICECUBE)
* Accel. ν_μ & $\bar{\nu}_\mu$ disappear at $L \sim 300/800$ Km (K2K, T2K, MINOS, NOνA)
* Some accelerator ν_μ appear as ν_τ at $L \sim 700$ Km (OPERA)
* Some accelerator ν_μ appear as ν_e at $L \sim 300/800$ Km (T2K, MINOS, NOνA)
* Solar ν_e convert to ν_μ/ν_τ (Cl, Ga, SK, SNO, Borexino)
* Reactor $\bar{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
* Reactor $\bar{\nu}_e$ disappear at $L \sim 1$ Km (D-Chooz, Daya Bay, Reno)

Confirmed: Vacuum oscillation L/E pattern with 2 frequencies MSW conversion in Sun
3ν Flavour Parameters

- For 3 ν’s: 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

\[U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13} e^{-i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_1} & 0 & 0 \\ 0 & e^{i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

- Two Possible Orderings
3ν Flavour Parameters

- For 3 ν’s: 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

\[
U_{\text{LEP}} = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{i\delta_{\text{cp}}} \\
0 & 1 & 0 \\
-s_{13}e^{-i\delta_{\text{cp}}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{21} & s_{12} & 0 \\
-c_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
e^{-i\eta_{1}} & 0 & 0 \\
0 & e^{-i\eta_{2}} & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

- Two Possible Orderings

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Dominant Dependence</th>
<th>Important Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Experiments</td>
<td>(\theta_{12})</td>
<td>(\Delta m_{21}^2, \theta_{13})</td>
</tr>
<tr>
<td>Reactor LBL (KamLAND)</td>
<td>(\Delta m_{21}^2)</td>
<td>(\theta_{12}, \theta_{13})</td>
</tr>
<tr>
<td>Reactor MBL (Daya Bay, Reno, D-Chooz)</td>
<td>(\theta_{13})</td>
<td>(\Delta m_{\text{atm}}^2)</td>
</tr>
<tr>
<td>Atmospheric Experiments</td>
<td>(\theta_{23})</td>
<td>(\Delta m_{\text{atm}}^2, \theta_{13}, \delta_{\text{cp}})</td>
</tr>
<tr>
<td>Acc LBL (\nu_{\mu}) Disapp (Minos,T2K,NOvA)</td>
<td>(\Delta m_{\text{atm}}^2)</td>
<td>(\theta_{23})</td>
</tr>
<tr>
<td>Acc LBL (\nu_{e}) App (Minos,T2K,NOvA)</td>
<td>(\theta_{13})</td>
<td>(\delta_{\text{cp}}, \theta_{23})</td>
</tr>
</tbody>
</table>
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

Flavour Parameters: Status in 6/2016

Maltoni, Schwetz, Martinez-Soler, Esteban, MCG-G

\[
\begin{align*}
\Delta \chi^2 & = 6.5, 7, 7.5, 8, 8.5 \\
\Delta m_{21}^2 & = \left[10^{-5} \text{ eV}^2\right] \\
\sin^2 \theta_{12} & = 0.2, 0.25, 0.3, 0.35, 0.4 \\
\sin^2 \theta_{23} & = 0.0, 0.05, 0.1, 0.15, 0.2 \\
\sin^2 \theta_{13} & = 0.015, 0.02, 0.025, 0.03, 0.035 \\
\delta_{\text{CP}} & = 0, 90, 180, 270, 360
\end{align*}
\]

\[\theta_{23} \neq 45 \quad \theta_{23} < 45?\]

\[\text{N/I?} \quad \delta_{\text{CP}}\]
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

3\nu Analysis: Leptonic CP violation

• “Hint” CP phase around $\delta_{CP} = \frac{3\pi}{2}$ (maximal)

![Graph showing $\Delta \chi^2$ vs δ_{CP} for IO and NO](image)

ν Analysis: Leptonic CP violation

• Leptonic Jarslog Determinant

![Graph showing $\Delta \chi^2$ vs J_{CP}](image)

Potentially much larger than the quark sector $J_{CMK} = (3.06^{+0.21}_{-0.20}) \times 10^{-5}$
Issues with the Solar Fluxes

- Newer determination of abundance of heavy elements in solar surface give lower values
- Solar Models with these lower metallicities fail in reproducing helioseismology data

<table>
<thead>
<tr>
<th>Flux</th>
<th>GS98</th>
<th>AGSS09</th>
<th>Diff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp/10^{10}</td>
<td>5.97</td>
<td>6.03</td>
<td>0.8</td>
</tr>
<tr>
<td>pep/10^{8}</td>
<td>1.41</td>
<td>1.44</td>
<td>2.1</td>
</tr>
<tr>
<td>hep/10^{3}</td>
<td>7.91</td>
<td>8.18</td>
<td>3.4</td>
</tr>
<tr>
<td>$^7\text{Be}/10^9$</td>
<td>5.08</td>
<td>4.64</td>
<td>8.8</td>
</tr>
<tr>
<td>$^8\text{B}/10^6$</td>
<td>5.88</td>
<td>4.85</td>
<td>17.7</td>
</tr>
<tr>
<td>$^{13}\text{N}/10^8$</td>
<td>2.82</td>
<td>2.07</td>
<td>26.7</td>
</tr>
<tr>
<td>$^{15}\text{O}/10^8$</td>
<td>2.09</td>
<td>1.47</td>
<td>30.0</td>
</tr>
<tr>
<td>$^{17}\text{F}/10^{16}$</td>
<td>5.65</td>
<td>3.48</td>
<td>38.4</td>
</tr>
</tbody>
</table>

Most difference in CNO fluxes

- Two sets of SSM:
 Starting from Bahcall et al. 05, Serenelli et al. 0909.2668
 GS98 uses older metallicities
 AGSXX uses newer metallicities
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

Issues with the Solar Fluxes

– Newer determination of abundance of heavy elements in solar surface give lower values
– Solar Models with these lower metallicities fail in reproducing helioseismology data

– Two sets of SSM:
 Starting from Bahcall et al 05, Serenelli et al 0909.2668
 GS98 uses older metallicities
 AGSXX uses newer metallicities

<table>
<thead>
<tr>
<th>Flux cm$^{-2}$ s$^{-1}$</th>
<th>GS98</th>
<th>AGSS09</th>
<th>Diff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp/1010</td>
<td>5.97</td>
<td>6.03 (1 ± 0.005)</td>
<td>0.8</td>
</tr>
<tr>
<td>pep/108</td>
<td>1.41</td>
<td>1.44 (1 ± 0.010)</td>
<td>2.1</td>
</tr>
<tr>
<td>hep/103</td>
<td>7.91</td>
<td>8.18 (1 ± 0.15)</td>
<td>3.4</td>
</tr>
<tr>
<td>7Be/109</td>
<td>5.08</td>
<td>4.64 (1 ± 0.06)</td>
<td>8.8</td>
</tr>
<tr>
<td>8B/106</td>
<td>5.88</td>
<td>4.85 (1 ± 0.12)</td>
<td>17.7</td>
</tr>
<tr>
<td>13N/108</td>
<td>2.82</td>
<td>2.07 (1$^{+0.14}_{-0.13}$)</td>
<td>26.7</td>
</tr>
<tr>
<td>15O/108</td>
<td>2.09</td>
<td>1.47 (1$^{+0.16}_{-0.15}$)</td>
<td>30.0</td>
</tr>
<tr>
<td>17F/1016</td>
<td>5.65</td>
<td>3.48 (1$^{+0.17}_{-0.16}$)</td>
<td>38.4</td>
</tr>
</tbody>
</table>

Most difference in CNO fluxes
Issues with the Solar Fluxes

– Newer determination of abundance of heavy elements in solar surface give lower values
– Solar Models with these lower metallicities fail in reproducing helioseismology data

– Two sets of SSM:
 Starting from Bahcall et al 05, Serenelli et al 0909.2668
 GS98 uses older metallicities
 AGSXX uses newer metallicities

 Impact in Osc Parameter Determination

 Negligable ⇒ Possible to Invert and Extract Fluxes from Data.
Learning how the Sun Shines with ν's

Results of Oscillation analysis with solar flux normalizations free: $f_i = \frac{\Phi_i}{\Phi_{GS98}}$

Present limit on CNO:

$$\frac{L_{\text{CNO}}}{L_\odot} < 2\% \ (3\sigma)$$

Test of Luminosity Constraint:

$$\frac{L_\odot (\nu - \text{inferred})}{L_\odot} = 1.04 \pm 0.07$$

Comparing with the Models:

Both statistically equally probable

New experiments needed
more sensitive to CNO fluxes

New models with new Nuclear Rates
New problems with Helioseismology

Beyond 3ν’s: Light Sterile Neutrinos

- Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim eV^2$

Reactor Anomaly

New reactor flux calculation

\Rightarrow Deficit in data at $L \lesssim 100$ m

Explained as ν_e disappearance

Gallium Anomaly

Acero, Giunti, Laveder, 0711.4222
Giunti, Laveder, 1006.3244

Radioactive Sources (51Cr, 37Ar)
in calibration of Ga Solar Exp;

$\nu_e + ^{71}$Ga $\rightarrow ^{71}$Ge + e^-

Give a rate lower than expected

$$R = \frac{N_{\text{obs}}}{N_{\text{Bahc}}^{\text{th}}} = 0.86 \pm 0.05 \ (2.8\sigma)$$

Explained as ν_e disappearance

LSND, MiniBoone

$\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$

Kopp et al, ArXiv 1303.3011

Kopp et al, ArXiv 1303.3011
• These explanations require $3+N_s$ mass eigenstates $\rightarrow N_s$ sterile neutrinos

$$\nu_e \rightarrow \nu_e \text{ disapp} \ (\text{REACT,Gallium,Solar, LSND/KARMEN})$$

• Problem: fit together
 $$\nu_\mu \rightarrow \nu_e \text{ app} \ (\text{LSND,KARMEN,NOMAD,MiniBooNE,E776,ICARUS})$$
 $$\nu_\mu \rightarrow \nu_\mu \text{ disapp} \ (\text{CDHS,ATM,MINOS,MiniBooNE})$$

• Generically: $P(\nu_e \rightarrow \nu_\mu) \sim |U_{ei}^* U_{\mu i}| \ [i = \text{heavier state(s)}]$

 But $|U_{ei}|$ constrained by $P(\nu_e \rightarrow \nu_e)$ disappearance data
 And $|U_{\mu i}|$ constrained by $P(\nu_\mu \rightarrow \nu_\mu)$ disappearance data \} \Rightarrow \text{Severe tension}
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

Light Sterile Neutrinos: 3+1

• Comparing the parameters required to explain signals with bounds from disappearance

Kopp et al, ArXiv 1303.3011

Further Disfavoured by ICECUBE

Giunti et al, ArXiv 1308.5288

Somewhat different conclusions
Light Sterile Neutrinos: 3+1

- Comparing the parameters required to explain signals with bounds from disappearance

Kopp et al., ArXiv 1303.3011

Further Disfavoured by ICECUBE

Giunti et al., ArXiv 1308.5288

Somewhat different conclusions

More latter...
Neutrino Mass Scale: Laboratory Probes

Single β decay: Dirac or Majorana ν mass modify spectrum endpoint

\[m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2 \]

Present bound: \(m_{\nu_e} \leq 2.2 \) eV (at 95% CL)
Katrin (2016?) Sensitivity to \(m_{\nu_e} \sim 0.2 \) eV
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

Neutrino Mass Scale: Laboratory Probes

Single β decay: Dirac or Majorana ν mass modify spectrum endpoint

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2$$

Present bound: $m_{\nu_e} \leq 2.2$ eV (at 95 % CL)

Katrin (2016?) Sensitivity to $m_{\nu_e} \sim 0.2$ eV

ν-less Double-β decay: \iff Majorana ν's

If m_ν only source of ΔL

$$T_{1/2}^{0\nu} = \frac{m_e}{G_{0\nu} M_{\text{nucl}}^2 m_{ee}^2}$$

$$m_{ee} = |\sum U_{ej}^2 m_j|$$

$$= |c_{13}^2 c_{12} m_1 e^{i\eta_1} + c_{13}^2 s_{12} m_2 e^{i\eta_2} + s_{13}^2 m_3 e^{-i\delta_{CP}}|$$
Bounds from ^{136}Xe (EXO and KamLAND-ZEN), ^{76}Ge (Gerda) and ^{130}Te (Cuore-0)
The Emerging Picture

- At least two neutrinos are massive ⇒ There is NP

- Oscillations DO NOT determine the lightest mass but β decay:
 \[\sum m_{\nu_i} \leq 2 \text{ eV/c}^2 \]

⇒ Heaviest \(\nu \) is at least 1 million de times lighter than the electron

- Dirac or Majorana?: We do not know

- Three mixing angles are non-zero (and relatively large) ⇒ very different from CKM

 – The two arising questions

 * Why are neutrinos so light?

 The Origin of Neutrino Mass

 * Why are lepton mixing so different from quark’s?

 The Flavour Puzzle
Bottom-up: Light \(\nu \) from Generic New Physics

If SM is an effective low energy theory, for \(E \ll \Lambda_{NP} \)
- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable
 \((\text{dim} > 4) \) operators

\[
\mathcal{L} = \mathcal{L}_{SM} + \sum_n \frac{1}{\Lambda_{NP}^{n-4}} \mathcal{O}_n
\]

First NP effect \(\Rightarrow \text{dim=}5 \) operator
There is only one!

\[
\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{NP}} \left(\overline{L_{L,i}} \tilde{\phi} \right) \left(\tilde{\phi}^T L_{L,j}^C \right)
\]
If SM is an effective low energy theory, for $E \ll \Lambda_{NP}$

– The same particle content as the SM and same pattern of symmetry breaking

– But there can be non-renormalizable

$$L = L_{SM} + \sum_n \frac{1}{\Lambda_{NP}^{n-4}} O_n$$

First NP effect \Rightarrow dim=5 operator

There is only one!

which after symmetry breaking

induces a ν Majorana mass

$$\begin{align*}
L_5 &= \frac{Z_{ij}^\nu}{\Lambda_{NP}} \left(\overline{L}_L i \phi \right) \left(\phi^T L_L^C \right) \\
(M_\nu)_{ij} &= Z_{ij}^\nu \frac{v^2}{\Lambda_{NP}}
\end{align*}$$

Implications:

– It is natural that ν mass is the first evidence of NP

– Naturally $m_\nu \ll$ other fermions masses $\sim \lambda^f v$ if $\Lambda_{NP} \gg v$
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

Bottom-up: Light ν from Generic New Physics

If SM is an effective low energy theory, for $E \ll \Lambda_{NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable
 (dim > 4) operators

\[\mathcal{L} = \mathcal{L}_{SM} + \sum_n \frac{1}{\Lambda_{NP}^{n-4}} \mathcal{O}_n \]

First NP effect \Rightarrow dim=5 operator

There is only one!

which after symmetry breaking

induces a ν Majorana mass

\[(M_\nu)_{ij} = Z_{ij}^\nu \frac{v^2}{\Lambda_{NP}} \]

Implications:

- It is natural that ν mass is the first evidence of NP

- Naturally $m_\nu \ll$ other fermions masses $\sim \lambda^f v$ if $\Lambda_{NP} \gg v$

- $m_\nu > \sqrt{\Delta m^2_{atm}} \sim 0.05$ eV for $Z' \sim 1 \Rightarrow \Lambda_{NP} \sim 10^{15}$ GeV $\Rightarrow \Lambda_{NP} \sim$ GUT scale

 \Rightarrow Leptogenesis possible

 [But if $Z' \sim (Y_e)^2 \Rightarrow \Lambda_{NP} \sim$ TeV scale]
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

Implications: Leptogenesis

- Majorana $m_\nu \Rightarrow$ Lepton \neq violating \Rightarrow Matter-Antimatter asymmetry possible
Implications: Leptogenesis

- **Majorana** $m_\nu \Rightarrow$ Lepton \neq violated \Rightarrow Matter-Antimatter asymmetry possible

- **How?** In the Early Universe via decay of heavy state N related to ν-mass generation

 - If \mathcal{CP}: $\Gamma(N \rightarrow X l) \neq \Gamma(N \rightarrow \overline{X} \overline{l})$
 - And decay is out of equilibrium: ($\Gamma_N \ll$ Universe expansion rate)

 \[
 \Delta L \text{ is generated}
 \]

 \[
 \Delta L \text{ is transformed in } \Delta B
 \]

- Today

 \[
 \mu_B = -\frac{g_{*_{\text{today}}}}{g_{*_{\text{end}}}} a_{\text{sph}} N_{L_{\text{end}}} \simeq -\frac{3.92}{106.75} \frac{28}{79} N_{L_{\text{end}}} \simeq 10^{-2} N_{L_{\text{end}}}
 \]
Implications: Leptogenesis

- Majorana $m_\nu \Rightarrow$ Lepton $\#$ violated \Rightarrow Matter-Antimatter asymmetry possible

- How? In the Early Universe via decay of heavy state N related to ν-mass generation

\[
\begin{align*}
N & \rightarrow l \\
N & \rightarrow \bar{l}
\end{align*}
\]

- If $\not CP : \Gamma(N \rightarrow X l) \neq \Gamma(N \rightarrow X \bar{l})$

- And decay is out of equilibrium:
 \((\Gamma_N \ll \text{Universe expansion rate})\)

SM sphaleron processes $\Rightarrow \Delta L$ is transformed in ΔB

- Today
 \[
 \mu_B = -\frac{g_*^{\text{today}}}{g_*^{\text{end}}} a_{\text{sph}} N_L^{\text{end}} \simeq -\frac{3.92}{106.75} \frac{28}{79} N_L^{\text{end}} \simeq 10^{-2} N_L^{\text{end}}
 \]

- To obtain N_L^{end}: solve Boltzman Eqs. with all relevant processes
 \Rightarrow Details and connection to ν parameters are model dependent
Leptogenesis connection to ν’s: Challenge

\mathcal{O}_5 is generated for example by tree-level exchange of singlet ($N_i \equiv (1, 1)_0$) (Type-I) or triplet fermions ($N_i \equiv \Sigma_i \equiv (1, 3)_0$) (Type-III) or a scalar triplet $\Delta \equiv (1, 3)_1$ (Type-II)
\(\mathcal{O}_5 \) is generated for example by tree-level exchange of singlet \((N_i \equiv (1, 1)_0)\) (Type-I) or triplet fermions \((N_i \equiv \Sigma_i \equiv (1, 3)_0)\) (Type-III) or a scalar triplet \(\Delta \equiv (1, 3)_1\) (Type-II).

- For fermionic see-saw
 \[-\mathcal{L}_{NP} = -iN_i\phi N_i + \frac{1}{2} M_{Nij} \bar{N}_i^{C} N_j + \lambda^\nu_T \lambda^{\nu}_\alpha N_j \nu L_\alpha \bar{\phi} N_j \mu \tau \]
 \[\Rightarrow \mathcal{O}_5 = \frac{(\lambda^{\nu T} \lambda^{\nu})_{\alpha \beta}}{\Lambda_{NP}} \left(\bar{L}_\alpha \phi \right) \left(\tilde{\phi}^T L^C_\beta \right) \text{ with } \Lambda_{NP} = M_N \]

- For scalar see-saw
 \[-\mathcal{L}_{NP} = f_{\Delta \alpha \beta} \bar{L}_\alpha \Delta L^C_\beta + M^2_{\Delta} |\Delta|^2 + \kappa \phi^T \Delta^\dagger \phi \ldots \]
 \[\Rightarrow \mathcal{O}_5 = \frac{f_{\Delta \alpha \beta}}{\Lambda_{NP}} \left(\bar{L}_\alpha \phi \right) \left(\tilde{\phi}^T L^C_\beta \right) \text{ with } \Lambda_{NP} = \frac{M^2_{\Delta}}{\kappa} \]

Very different HE physics, but same LE \(\nu\) parameters.
Leptogenesis connection to ν’s: Example

- Generically in these see-saw models successful leptogenesis
 - Lower bound on heavy decaying particle (for enough asymmetry)
 - Upper bound on light neutrino mass (for not too much washout)
- For example in Type-I see-saw

\[
\begin{align*}
M_1 &\gtrsim 3 \times 10^9 \text{ GeV} \quad (\text{for zero initial abundance}) \\
M_1 &\gtrsim 6 \times 10^8 \text{ GeV} \quad (\text{for thermal initial abundance})
\end{align*}
\]

\Rightarrow Upper bound on neutrino mass $\bar{m} = \sqrt{m_1^2 + m_2^2 + m_3^2} \lesssim \mathcal{O}(\text{eV})$
Light massive ν in Cosmology

Relic ν's: Effects in several cosmological observations at several epochs

<table>
<thead>
<tr>
<th>Primordial Nucleosynthesis</th>
<th>Cosmic Microwave Background</th>
<th>Large Scale Structure Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBN</td>
<td>CMB</td>
<td>LSS</td>
</tr>
<tr>
<td>$T \sim \text{MeV}$</td>
<td>$T \lesssim \text{eV}$</td>
<td>N_{eff} and $\sum m_\nu$</td>
</tr>
<tr>
<td>Number of ν's (N_{eff})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observables also depend on all other cosmological parameters

See also talk by V. Niro on Friday and posters by Cuesta and Giusarma
In general at $T < m_e$ we can always write

$$\rho_r = \left[1 + \frac{7}{8} \times \left(\frac{4}{11} \right)^{\frac{4}{3}} N_{\text{eff}} \right] \rho_\gamma$$

$\Delta N_{\text{eff}} = N_{\text{eff}} - 3$ (exactly -3.04) parametrizes:

- Any new relativistic states (accounting for their decoupling temperature)
- Possible new ν-interactions (which change the relation between T_γ and T_ν)
• In general at $T < m_e$ we can always write
\[
\rho_r = \left[1 + \frac{7}{8} \times \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right] \rho_\gamma
\]

$\Delta N_{\text{eff}} = N_{\text{eff}} - 3$ (exactly -3.04) parametrizes:
- Any new relativistic states (accounting for their decoupling temperature)
- Possible new ν-interactions (which change the relation between T_γ and T_ν)

• At BBN $N_{\text{eff}} > 3$:
 ⇒ Faster expansion of Universe
 ⇒ Weak Interac freeze-out earlier
 ⇒ Larger $\frac{n_n}{n_p}$ ⇒ Larger ^4He abundance
In general at $T < m_e$ we can always write

$$\rho_r = \left[1 + \frac{7}{8} \times \left(\frac{4}{11} \right)^{\frac{4}{3}} N_{\text{eff}} \right] \rho_\gamma$$

$$\Delta N_{\text{eff}} = N_{\text{eff}} - 3 \quad \text{(exactly -3.04)} \quad \text{parametrizes:}$$

- Any new relativistic states (accounting for their decoupling temperature)
- Possible new ν-interactions (which change the relation between T_γ and T_ν)

At BBN $N_{\text{eff}} > 3$:

⇒ Faster expansion of Universe
⇒ Weak Interac freeze-out earlier
⇒ Larger $\frac{n_n}{n_p}$ ⇒ Larger 4He abundance

Cyburt et al arXiv:1505.0176

BBN 4He and Deut: $N_{\text{eff}} = 2.85 \pm 0.28$
• CMB almost unaffected by 3 ν’s if they are relativistic at recombination $z_{rec} = 1089$

At recombination $T_{\gamma}^{rec} \approx 3000 \text{ K} \approx 0.26 \text{ eV}$

$\Rightarrow T_{\nu}^{rec} = \left(\frac{4}{11} \right) \frac{1}{3} T_{\gamma}^{rec} \approx 0.18 \text{ eV}$

The mean momenta of the neutrino

$\langle p_{\nu} \rangle_{rec} = \frac{7\pi^4}{180\xi(3)} T_{\nu}^{rec} = 0.58 \text{ eV}$

So ν’s direct effect of CMB if $\sum m_{\nu_i} > \mathcal{O}(\text{eV})$
CMB: Effects of Neutrinos

- CMB almost unaffected by 3 ν's if they are relativistic at recombination $z_{rec} = 1089$

At recombination $T_{\gamma}^{rec} \simeq 3000 \text{ K} \simeq 0.26 \text{ eV}$ \Rightarrow \quad T_{\nu}^{rec} = \left(\frac{4}{11} \right)^{\frac{1}{3}} T_{\gamma}^{rec} \simeq 0.18 \text{ eV}

The mean momenta of the neutrino $\langle p_{\nu} \rangle_{rec} = \frac{7\pi^4}{180\xi(3)} T_{\nu}^{rec} = 0.58 \text{ eV}$

So ν's direct effect of CMB if $\sum m_{\nu_i} > \mathcal{O}(\text{eV})$

- For 3 lighter ν's effect is indirect (and small): $f_{\nu} = \frac{\Omega_{\nu}}{\Omega_m} \neq 0$ changes background evolution (time of matter-radiation equality)
CMB: Effect of Neutrinos

- CMB almost unaffected by 3 ν's if they are relativistic at recombination $z_{\text{rec}} = 1089$

At recombination $T_{\gamma}\text{rec} \simeq 3000$ K $\simeq 0.26$ eV $\Rightarrow T_{\nu}\text{rec} = \left(\frac{4}{11}\right)^{\frac{1}{3}} T_{\gamma}\text{rec} \simeq 0.18$ eV

The mean momenta of the neutrino $\langle p_{\nu}\rangle_{\text{rec}} = \frac{7\pi^4}{180\xi(3)} T_{\nu}\text{rec} = 0.58$ eV

So ν's direct effect of CMB if $\sum m_{\nu_i} > \mathcal{O}(\text{eV})$

- For 3 lighter ν's effect is indirect (and small): $f_{\nu} = \frac{\Omega_{\nu}}{\Omega_m} \neq 0$ changes background evolution (time of matter-radiation equality)

- But parameter degeneracies:
 Same effect by change of other cosmological parameters

CMB: Effect of Neutrinos

- CMB almost unaffected by 3 ν’s if they are relativistic at recombination $z_{rec} = 1089$

At recombination $T^\gamma_{rec} \simeq 3000$ K $\simeq 0.26$ eV $\Rightarrow T^\nu_{rec} = \left(\frac{4}{11}\right)^{\frac{1}{3}} T^\gamma_{rec} \simeq 0.18$ eV

The mean momenta of the neutrino $\langle p_\nu \rangle_{rec} = \frac{7\pi^4}{180\xi(3)} T^\nu_{rec} = 0.58$ eV

So ν’s direct effect of CMB if $\sum m_{\nu_i} > \mathcal{O}(\text{eV})$

- For more than 3 ν’s: a change in N_{eff} changes the time of matter-radiation equality

$$1 + z_{eq} = \frac{\Omega_m}{\Omega_r} = \frac{\Omega_m h^2}{\Omega_\gamma h^2} \frac{1}{1 + 0.2271 N_{\text{eff}}}$$

- The ratio 1st/3rd peak in CMB $\Rightarrow z_{eq} = 3386 \pm 69$ but N_{eff} degenerated with Ω_m
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

CMB: Effect of Neutrinos

- CMB almost unaffected by 3 ν's if they are relativistic at recombination $z_{rec} = 1089$

At recombination $T_{\gamma}^{rec} \simeq 3000$ K$\simeq 0.26$ eV $\Rightarrow T_{\nu}^{rec} = \left(\frac{4}{11}\right)^{\frac{1}{3}} T_{\gamma}^{rec} \simeq 0.18$ eV

The mean momenta of the neutrino $\langle p_{\nu}\rangle_{rec} = \frac{7\pi^4}{180\xi(3)} T_{\nu}^{rec} = 0.58$ eV

So ν's direct effect of CMB if $\sum m_{\nu_i} > \mathcal{O}(eV)$

- For more than 3 ν's: a change in N_{eff} changes the time of matter-radiation equality

$$1 + z_{eq} = \frac{\Omega_m}{\Omega_r} = \frac{\Omega_m h^2}{\Omega_{\gamma} h^2} \frac{1}{1 + 0.2271 N_{\text{eff}}}$$

- The ratio 1st/3rd peak in CMB $\Rightarrow z_{eq} = 3386 \pm 69$ but N_{eff} degenerated with Ω_m

The conclusions is:

Combined analysis of Several Observables to break Degeneracies
Matter Power Spectrum: Effects of ν's

- Contrary to CDM, ν's move at speed $v_\nu \sim \min\left[c, 3 \frac{T_\nu}{m_\nu}\right]$

 \Rightarrow They can travel freely over distances $\lambda_{FS} \sim \frac{v_\nu}{H(t)}$

 \Rightarrow They affect structures formed over scales k with $\frac{2\pi a(t)}{k} \leq \lambda_{FS}$

 $k \geq k_{nr} \simeq 0.018 \Omega_m^{1/2} \frac{m_\nu}{1\text{ eV}}$
Matter Power Spectrum: Effects of ν’s

- Contrary to CDM, ν’s move at speed $v_{\nu} \sim \min \left[c, 3 \frac{T_{\nu}}{m_{\nu}} \right]$

 \Rightarrow They can travel freely over distances $\lambda_{FS} \sim \frac{v_{\nu}}{H(t)}$

 \Rightarrow They affect structures formed over scales k with $\frac{2\pi a(t)}{k} \leq \lambda_{FS}$

 $k \geq k_{nr} \simeq 0.018 \Omega_{m}^{1/2} \frac{m_{\nu}}{1 \text{eV}}$

- If all DM formed of ν’s (Hot Dark Matter) no structure formed with $k \geq k_{nr}$

 \Rightarrow Pure HDM Ruled out by Observations

 \Rightarrow Subdominant contribution of ν’s to DM Constrained by Observations
Matter Power Spectrum: Effects of ν's

- In a Universe with CDM+ν's with $f_\nu = \frac{\Omega_\nu}{\Omega_m} \ll 1$

\[
\frac{\Delta P(k)}{P(k)} \simeq -8f_\nu \simeq -0.09 \sum m_{\nu_i} \frac{1}{1 \text{eV} \Omega_m h^2} \quad \text{for } k \gg k_{nr}
\]

Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

Cosmological Analysis by Planck

arXiv:1502.01589

<table>
<thead>
<tr>
<th>Model</th>
<th>Observables</th>
<th>Σm_ν (eV) 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT + lowP</td>
<td>≤ 0.72</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT + lowP + lensing</td>
<td>≤ 0.68</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT,TE,EE + lowP+lensing</td>
<td>≤ 0.59</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT,TE,EE + lowP</td>
<td>≤ 0.49</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT + lowP + lensing + BAO + SN + H_0</td>
<td>≤ 0.23</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT,TE,EE + lowP+ BAO</td>
<td>≤ 0.17</td>
</tr>
</tbody>
</table>
Neutrino Mass Scale

Single β decay: Dirac or Majorana ν mass modify spectrum endpoint

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2$$

Present bound: $m_{\nu_e} \leq 2.2$ eV (at 95% CL)

Katrin (2016?) Sensitivity to $m_{\nu_e} \sim 0.2$ eV

ν-less Double-β decay:⇔ Majorana ν's sensitive to Majorana phases

If m_{ν} only source of ΔL $(T_{1/2}^{0\nu})^{-1} \propto (m_{ee})^2$

$$m_{ee} = |\sum U_{ej}^2 m_j|$$

$$m_{ee} = |c_{13}^2 c_{12}^2 m_1 e^{i\eta_1} + c_{13}^2 s_{12}^2 m_2 e^{i\eta_2} + s_{13}^2 m_3 e^{-i\delta_{CP}}|$$

Present Bounds: $m_{ee} < 0.06–0.76$ eV

COSMO Neutrino mass (Dirac or Majorana) modify the growth of structures

$$\sum m_i$$
Global oscillation analysis

⇒ Correlations m_{ν_e}, m_{ee} and $\sum m_\nu$

(Fogli et al (04))

Nufit (95%)

- Width due to range in oscillation parameters very narrow
- High precision determination of m_{ν_e} and $\sum m_i$ can give information on ordering

- Wide band due to unknown Majorana phases ⇒ Possible Det of Maj phases

 If Matrix Element Uncertainty Reduced
Neutrino Mass Scale: The Cosmo-Lab Connection

Global oscillation analysis
⇒ Correlations m_{ν_e}, m_{ee} and $\sum m_\nu$
(Fogli et al hep-ph/0408045)

Nufit (95%)

Presently only Bounds
• From Tritium β decay (Mainz & Troisk expe)
 $m_{\nu_e} < 2.2$ eV (95%)
Katrin (2016?) Sensitivity to $m_{\nu_e} \sim 0.2$ eV
• From $0\nu\beta\beta$ decay for Majorana Neutrinos
 $m_{ee} < 0.06 - 0.15$ eV (90%)
Goal of Next Decade ⇒ m_{ee} at IO
• From Analysis of Cosmological data
Bound on $\sum m_\nu$ changes with:
 cosmo parameters fix in analysis
 cosmo observables considered

<table>
<thead>
<tr>
<th>Model</th>
<th>Observables</th>
<th>$\sum m_\nu$ (eV) 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT + lowP</td>
<td>≤ 0.72</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT + lowP + lensing</td>
<td>≤ 0.68</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT,TE,EE + lowP+lensing</td>
<td>≤ 0.59</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT,TE,EE + lowP</td>
<td>≤ 0.49</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT + lowP + lensing + BAO + SN + H_0</td>
<td>≤ 0.23</td>
</tr>
<tr>
<td>ΛCDM + m_ν</td>
<td>Planck TT,TE,EE + lowP+ BAO</td>
<td>≤ 0.17</td>
</tr>
</tbody>
</table>

See also talk by V. Niro on Friday and posters by Cuesta and Giusarma
One light ν_s mixed with 3 ν'_as contributes to ρ as N_{eff}.

From evol eq for 3 + 1 ensemble one finds
\[\Rightarrow \text{So if “explaination” to SBL anomalies} \]
1 ν_s contributes as much as 1 ν_a

But analysis of cosmo data in ΛCDM+r + ν_s tells us

Plank+WP+high-l+BAO

J. Bergstrom, etal, ArXiv:1407.3806
In string inspired E_6 models, 3 light ν_R’s with new interactions

$$ (Z' \text{ with coupling } Y^{\nu_R}_{Z'} = \cos \beta \frac{5}{\sqrt{40}} - \frac{1}{\sqrt{24}} \sin \beta) $$

In these scenarios $\Delta N_{\text{eff}} = 3 \times \left(\frac{T_{\nu R}}{T_{\nu L}} \right)^4 = 3 \times \left(\frac{g(T_{\nu R}^{\text{dec}})}{g(T_{\nu R}^{\text{dec}})} \right)^4$ Determined by $\sigma(\bar{\nu}_R \nu_R \rightarrow \bar{f} f)$ mediated by Z' (ie $M_{Z'}$ and coupling parameter β)

⇒ Interplay between cosmological determination of ΔN_{eff} and Z' LHC searches
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

Summary

• Neutrino oscillation searches have shown us

\[\Delta m_{21}^2 = 7.49 \times 10^{-5} \text{ eV}^2 \ (2.3\%) \]
\[\Delta m_{31}^2 = 2.48 \times 10^{-3} \text{ eV}^2 \ \text{NO} \ (1.8\%) \]
\[\Delta m_{32}^2 = -2.47 \times 10^{-3} \text{ eV}^2 \ \text{IO} \]

\[\sin^2 \theta_{12} = 0.308 \ (4\%) \]
\[\sin^2 \theta_{23} = \begin{cases} 0.579 & \text{IO} \ (7.2\%) \\ 0.479 & \text{NO} \end{cases} \]
\[\sin^2 \theta_{13} = 0.022 \ (4.8\%) \]

\[\Rightarrow U_{\text{LEP}} \ \text{Very different from } U_{\text{CKM}} \]

• \(m_\nu \neq 0 \Rightarrow \) Need to extend SM

\[\text{NP breaking total } L \rightarrow \text{Majorana } \nu : \nu = \nu^C \]
\[\text{NP conserving total } L \rightarrow \text{Dirac } \nu : \nu \neq \nu^C \]

• Still ignore or not significantly determined

Majorana/Dirac? \(m_\nu \) scale \(\text{leptonic } C P \) Ordering? \{ \Rightarrow \) New experiments

Standing Puzzles: SBL anomalies light sterile \(\nu \)’s?

• More physics than \(\nu \) masses: VLI, NSI, Solar Physics, Cosmological effects . . .

• Majorana \(\nu' \)s: generic if SM is LE effective theory and explain \(\nu \) lightness

\[\Lambda_{NP} \sim 10^{15} \text{ GeV} \ \text{Fits OK in GUT} \]

Leptogenesis may explain the baryon asymmetry

• \(\nu' \)s example of interplay Particle Physics-Cosmology to learn about BSM physics
Atmospheric $\nu_{e,\mu}$ are produced by the interaction of cosmic rays (p, He . . .) with the atmosphere.

$$R_{\mu/e} = \frac{N_{\nu_\mu^+} N_{\nu_\mu^-}}{N_{\nu_e^+} N_{\nu_e^-}} \approx 2$$
Atmospheric Neutrinos: Results

- **SKI+II+III+IV data:**

 - **Sub-GeV (e):**
 - E_{ν} range: 10^{-1} to 10 GeV
 - $dN/d\ln E$ distribution
 - Events vs. $\cos(\text{zenith})$

 - **Sub-GeV (µ):**
 - E_{ν} range: 10^{-1} to 10 GeV
 - $dN/d\ln E$ distribution
 - Events vs. $\cos(\text{zenith})$

 - **Mid-GeV (e):**
 - E_{ν} range: 10^{-1} to 10^2 GeV
 - $dN/d\ln E$ distribution
 - Events vs. $\cos(\text{zenith})$

 - **Mid-GeV (µ):**
 - E_{ν} range: 10^{-1} to 10^2 GeV
 - $dN/d\ln E$ distribution
 - Events vs. $\cos(\text{zenith})$

 - **Multi-GeV PC (µ):**
 - E_{ν} range: 10^2 to 10^3 GeV
 - $dN/d\ln E$ distribution
 - Events vs. $\cos(\text{zenith})$

 - **Multi-GeV FC (µ):**
 - E_{ν} range: 10^2 to 10^3 GeV
 - $dN/d\ln E$ distribution
 - Events vs. $\cos(\text{zenith})$

 - **Stopping (µ):**
 - E_{ν} range: 10^2 to 10^3 GeV
 - $dN/d\ln E$ distribution
 - Events vs. $\cos(\text{zenith})$

 - **Through (µ):**
 - E_{ν} range: 10^2 to 10^3 GeV
 - $dN/d\ln E$ distribution
 - Events vs. $\cos(\text{zenith})$

Legend:
- ν_e, ν_μ, ν_τ, π, K, μ, e
- $L \approx 1.2 \times 10^4$ km
- $L \approx 10^2$ km
- $L = 10^3$ km
- $L = 10^4$ km
- [not to scale]
- $dN/d\ln E$ (Kt.yr)
- E_{ν}, GeV
- E_{ν}, GeV
- $dN/d\ln E$, (Kt.yr)$^{-1}$
- E_{ν}, GeV
Atmospheric Neutrinos: Results

- SKI+II+III+IV data:

→ ν_μ Deficit grows with L

→ ν_μ Deficit decreases with E
Atmospheric Neutrinos: Results

- SKI+II+III+IV data:

![Graphs showing data distributions for different energy ranges.](image)

Best explained by $\nu_\mu \rightarrow \nu_\tau$

$\Delta m^2 \sim 2.4 \times 10^{-3} \text{ eV}^2$

$\tan^2 \theta \sim 1 \Rightarrow \theta \sim \frac{\pi}{4}$

$\cos(\text{zenith})$
νµ Disappearance in Accelerator ν Fluxes

T2K:
νµ produced in Tokai (Japan)
detected in SK at ~ 250 Km

MINOS, NOνA
νµ produced en Fermilab (Illinois)
detected in Minnesota at ~ 800 Km

Lectures by G. Feldman
Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

Long Baseline Experiments: ν_μ Disappearance

K2K/T2K 2004–: spectral distortion

MINOS 2006–: spectral distortion

ν_μ oscillations with $\Delta m^2 \sim 2.5 \times 10^{-3}$ eV2 and mixing compatible with $\frac{\pi}{4}$
Solar Neutrinos

- Sun shines by nuclear fusion of protons into He

- Two main chains of nuclear reactions

 pp Chain:

 1. \(p + p \rightarrow D + e^+ + \nu_e \) (99.75%)
 2. \(p + e^- + p \rightarrow D + \nu_e \) (0.25%)
 3. \(^3\text{He} + ^3\text{He} \rightarrow \alpha + 2p \) (p-p I : 86%)
 4. \(^3\text{He} + ^4\text{He} \rightarrow ^7\text{Be} + \gamma \)
 5. \(^7\text{Be} + p \rightarrow ^8\text{B} + \gamma \) (0.00002%)

- **CNO cycle:**

 \(^7\text{Li} + p \rightarrow 2\alpha \) (p-p II : 14%)

 \(^8\text{Be} \rightarrow 2\alpha \) (p-p III : 0.015%)

And only \(\nu_e \) are produced
Solar Neutrinos: Fluxes

Phenomenology with Massive Neutrinos
Concha Gonzalez-Garcia

PP CHAIN

\(p + p \rightarrow ^2 H + e^+ + \nu_e \leq 0.42 \)

\(p + e^- + p \rightarrow ^2 H + \nu_e \quad 1.552 \)

\((^7\text{Be}) \)

\(^7\text{Be} + e^- \rightarrow ^7\text{Li} + \nu_e \quad 0.862 (90\%) \quad 0.384 (10\%) \)

\((\text{hep}) \)

\(^2\text{He} + p \rightarrow ^4\text{He} + e^+ + \nu_e \leq 18.77 \)

\((^8\text{B}) \)

\(^8\text{B} \rightarrow ^8\text{Be}^* + e^+ + \nu_e \leq 15 \)

CNO CHAIN

\((^{13}\text{N}) \)

\(^{13}N \rightarrow ^{13}C + e^+ + \nu_e \leq 1.199 \)

\((^{15}\text{O}) \)

\(^{15}O \rightarrow ^{15}N + e^+ + \nu_e \leq 1.732 \)

\((^{17}\text{F}) \)

\(^{17}F \rightarrow ^{17}O + e^+ + \nu_e \leq 1.74 \)
Solar Neutrinos: Results

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Detection</th>
<th>Flavour</th>
<th>E_{th} (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homestake</td>
<td>$^{37}\text{Cl}(\nu, e^-)^{37}\text{Ar}$</td>
<td>ν_e</td>
<td>$E_\nu > 0.81$</td>
</tr>
<tr>
<td>Sage + Gallex+GNO</td>
<td>$^{71}\text{Ga}(\nu, e^-)^{71}\text{Ge}$</td>
<td>ν_e</td>
<td>$E_\nu > 0.23$</td>
</tr>
<tr>
<td>Kam ⇒ SK</td>
<td>ES $\nu_x e^- \rightarrow \nu_x e^-$</td>
<td>$\nu_e, \nu_{\mu/\tau}$</td>
<td>$E_e > 5$</td>
</tr>
<tr>
<td>SNO</td>
<td>CC $\nu_e d \rightarrow ppe^-$</td>
<td>ν_e</td>
<td>$T_e > 5$</td>
</tr>
<tr>
<td></td>
<td>NC $\nu_x d \rightarrow \nu_x p n$</td>
<td>$\nu_e, \nu_{\mu/\tau}$</td>
<td>$T_\gamma > 5$</td>
</tr>
<tr>
<td>Borexino</td>
<td>ES $\nu_x e^- \rightarrow \nu_x e^-$</td>
<td>$\nu_e, \nu_{\mu/\tau}$</td>
<td>$E_\nu = 0.862$</td>
</tr>
</tbody>
</table>

Experiments measuring ν_e observe a deficit.

Deficit is energy dependent.

Deficit disappears in NC.
• Real Time experiments can also give information on Energy and Direction of ν's and can search for Energy and Time variations of the effect

• From SK (also from SNO)

Energy Dependence

Deficit indep $E_\nu \gtrsim 5$ MeV

Day-Night Variation

Not significant

Seasonal Variation

Nothing beyond $1/R^2$
\[\Delta m^2 \sim 5 \times 10^{-5} \text{ eV}^2 \]
\[\tan^2 \theta \sim 0.4 \Rightarrow \theta \sim \frac{\pi}{6} \]
Different frequency and flavour than ATM and LBL
Terrestrial test of LMA: KamLAND

Lectures by K. Heeger

KamLAND: Detector of $\bar{\nu}_e$ produced in nuclear reactors in Japan at an average distance of 180 Km
Terrestrial test of LMA: KamLAND

KamLAND: Detector of $\bar{\nu}_e$ produced in nuclear reactors in Japan at an average distance of 180 Km

Results of KamLAND compared with P_{ee} for $\theta = 35^\circ$ and $\Delta m^2 = 7.5 \times 10^{-5} \text{ (eV/c}^2)^2$

![Graph showing survival probability vs. $L_0/E_{\bar{\nu}_e}$ (km/MeV)]

- Data - BG - Geo $\bar{\nu}_e$
- Expectation based on osci. parameters determined by KamLAND
• Searches for $\bar{\nu}_e \rightarrow \bar{\nu}_e$ disappearance at $L \sim K m$ ($E/L \sim 10^{-3} \, eV^2$)
• Relative measurement: near and far detectors

Daya-Bay

Reno
Daya-Bay and Reno Reactor Experiments

- Searches for $\bar{\nu}_e \rightarrow \bar{\nu}_e$ disappearance at $L \sim$ Km ($E/L \sim 10^{-3}$ eV²)
- Relative measurement: near and far detectors

Daya-Bay: 4 Near+ 4 Far

Described with $\Delta m^2 \sim 2.5 \times 10^{-3}$ eV²
(as ν_μ ATM and LBL acc but for ν_e)
and $\theta \sim 9^\circ$
Long Baseline Experiments: ν_e Appearance

- Observation of $\nu_\mu \rightarrow \nu_e$ transitions with $E/L \sim 10^{-3}$ eV2

T2K

MINOS

NO\nuA also

Well described with $\nu_\mu \rightarrow \nu_e$ oscillations with $\Delta m^2 \sim 2 \times 10^{-3}$ eV2 and $\theta \sim 11^\circ$
\(\nu \) Oscillations: Lab Searches at Short Distance

Appearance Experiment

\[\nu_\alpha \text{ source} \rightarrow \nu_\beta \text{ detector} \]

Searches for \(\beta \text{ diff} \alpha \)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(\langle \frac{E}{\text{MeV}} \rangle)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCFR</td>
<td>100</td>
<td>(\nu_\mu, \nu_e, \nu_\tau)</td>
<td></td>
</tr>
<tr>
<td>E531</td>
<td>25</td>
<td>(\nu_\mu, \nu_e, \nu_\tau)</td>
<td></td>
</tr>
<tr>
<td>Nomad</td>
<td>13</td>
<td>(\nu_\mu, \nu_e, \nu_\tau)</td>
<td></td>
</tr>
<tr>
<td>Chorus</td>
<td>13</td>
<td>(\nu_\mu, \nu_e, \nu_\tau)</td>
<td></td>
</tr>
<tr>
<td>E776</td>
<td>2.5</td>
<td>(\nu_\mu, \nu_e)</td>
<td></td>
</tr>
<tr>
<td>Karmen2</td>
<td>2.5</td>
<td>(\bar{\nu}_\mu, \bar{\nu}_e)</td>
<td></td>
</tr>
<tr>
<td>LSND</td>
<td>3</td>
<td>(\bar{\nu}_\mu, \bar{\nu}_e)</td>
<td></td>
</tr>
<tr>
<td>Miniboone</td>
<td>3</td>
<td>(\nu_\mu, \nu_e)</td>
<td></td>
</tr>
<tr>
<td>ICARUS</td>
<td>1</td>
<td>(\nu_\mu, \nu_e)</td>
<td></td>
</tr>
</tbody>
</table>

Disappearance Experiment

\[\nu_\alpha \text{ source} \rightarrow \nu_\alpha \text{ detector} \rightarrow \nu_\alpha \text{ detector} \]

Comparing \(\Phi_{\alpha I} \) and \(\Phi_{\alpha II} \) to look for loss

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(\langle \frac{E}{\text{MeV}} \rangle)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDHSW</td>
<td>1.4</td>
<td>(\nu_\mu)</td>
</tr>
<tr>
<td>BugeyIII</td>
<td>0.05</td>
<td>(\bar{\nu}_e)</td>
</tr>
<tr>
<td>Chooz</td>
<td>0.005</td>
<td>(\bar{\nu}_e)</td>
</tr>
</tbody>
</table>
LSND and MiniBooNE

- **LSND**: Main signal for $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ with $E_\nu \sim 0.03$ GeV and $L = 30$ m
- **MiniBooNE**: Search for $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ with $E_\nu = 0.3 - 2$ GeV and $L = 540$ m

Compatibility (?) for $\Delta m^2 \sim \text{eV}^2$

a third osc frequency?