Cosmological Constraints on Newton’s Gravitational Constant for Matter and Dark Matter

Jordi Salvadó
Instituto de Física Corpuscular

In collaboration with Yang Bai and Ben Stefanek

Cosmology Meeting BCN 2016
Cosmological measurements of G_N

- Very different scale than the lab experiments!

 Ken-ichi Umezu, K. Ichiki and M. Yahiro
 S. Galli, A. Melchiorri, G.F. Smoot and O. Zahn

We (ONLY!) know DM interacts with Gravity, but is it the same Gravity?

- Long Range Forces

 A. Nusser, S.S. Gubser and P.J.E. Peebles
 R. Bean, E.E. Flanagan, I. Laszlo and M. Trodden

- Dark Matter Equivalence Principle ($M_{grav} = M_{iner}$)
Cosmological linear theory
0-order (homogeneous and isotropic), \(\Omega_i \equiv \rho_i / \rho_{\text{crit}}, \ \rho_{\text{crit}} = \frac{3H^2}{8\pi G} \)

- Matter \(\rightarrow \Omega_m \rightarrow \Omega_{\text{cdm}}, \Omega_b \)
- Radiation \(\rightarrow \Omega_r \rightarrow \Omega_\gamma \) (fixed by \(T_{\text{CMB}} \), \(N_{\text{rel}} \))
- Reionization optical depth \(\rightarrow \tau \)
- Hubble parameter today \(\rightarrow H_0 \rightarrow \Omega_\Lambda \)

1-order, initial conditions for \(\delta \rho / \rho \) are determined by the primordial power spectrum from inflation,

- Primordial spectrum amplitude \(\rightarrow A_s \)
- Spectral index \((n_s = 1 \Rightarrow \text{flat spectra}) \) \(\rightarrow n_s \)

\[
P(k) = A_s \frac{k^{1-n_s}}{k^3} \rightarrow C_l, P_{\text{gal}}(k)
\]
How can we measure the gravitational constant G_N?

- Gravitational acceleration depends only on the product of Newton’s Constant G_N and the central body mass M.

$$a_{\text{grav}} = -\frac{G_N M}{r^2}$$

- To break this degeneracy and measure G_N, an additional force is required to define the central body mass.

How can we use cosmology to constrain G_N?

- Almost all can be absorbed redefining $\tau \rightarrow \lambda_G \tau$ and $k \rightarrow k/\lambda_G$.

- The baryons interact electromagnetically with the photons.

$$\dot{\delta}_b = -\theta_b + 3\dot{\phi}$$

$$\dot{\theta}_b = -\frac{\dot{a}}{a}\theta_b + c_s^2 k^2 \delta_b + \frac{4\bar{\rho}_\gamma}{3\bar{\rho}_b} a n_e \sigma_T (\theta_\gamma - \theta_b) + k^2 \psi$$

- The Thomson scattering term is the only one that cannot be absorbed.

- Varying G now yields an observable change in cosmological evolution.
- Cosmological equations integrated and CMB spectra computed using the publicly available CLASS code.
Analysis Method

Markov Chain Monte Carlo (MCMC) using the publicly available MontePython code (written to work with CLASS).

\[P(\theta_i|D) = \frac{\mathcal{L}(D|\theta_i)\pi(\theta_i)}{\int \mathcal{L}(D|\theta_i) d\theta_1 \ldots d\theta_N} \]

1. Planck 2013 & 2015 Data Release
2. 3 Yr, High-\(\ell\) TT polarization from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT).
3. BAO data from Sloan Digital Sky Survey (SDSS) (Data Releases 7 and 9) and Six degree Field Galaxy Survey (6dFGS).
4. \(H_0\) measurement from Wide Field Camera 3 on HST (0.01 < \(z\) < 0.1)
Planck Constraint on λ_G

- Planck 2015 gives a result consistent with lab experiments at 1σ

<table>
<thead>
<tr>
<th>Data</th>
<th>λ_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planck 2013</td>
<td>$1.062^{+0.0309}_{-0.0311}$</td>
</tr>
<tr>
<td>Planck+Lensing+BAO</td>
<td>$1.041^{+0.024}_{-0.027}$</td>
</tr>
<tr>
<td>Planck+Lensing+BAO+HST</td>
<td>$1.046^{+0.026}_{-0.027}$</td>
</tr>
<tr>
<td>Planck+Lensing+BAO+BBN</td>
<td>$1.046^{+0.021}_{-0.021}$</td>
</tr>
<tr>
<td>Planck+ACT/SPT</td>
<td>$1.026^{+0.013}_{-0.014}$</td>
</tr>
<tr>
<td>Planck+Lensing+BAO+HST+ACT/SPT</td>
<td>$1.038^{+0.022}_{-0.023}$</td>
</tr>
<tr>
<td>Planck+Lensing+BAO+BBN+ACT/SPT</td>
<td>$1.043^{+0.019}_{-0.019}$</td>
</tr>
<tr>
<td>Planck 2015</td>
<td>$1.025^{+0.025}_{-0.026}$</td>
</tr>
</tbody>
</table>
DM sector Long Range Force Model

- Use a traditional long range “fifth force” to model different dynamics in the dark matter sector.

\[\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^2 \phi^2 + \bar{\chi} \gamma_{\mu} \partial^{\mu} \chi - \left(1 + \frac{\phi}{f} \right) m_{\chi} \bar{\chi} \chi \]

For scales smaller than \(r_s = m_{\phi}^{-1} \), the Yukawa interaction mediates a fifth force. This fifth force will be long ranged if the mediator \(\phi \) is nearly massless.

\[V(r) = -\frac{G_N m_{D1} m_{D2}}{r} \left[1 + \alpha_f e^{-m_{\phi} r} \right] \]

- Attempt to constrain \(\alpha_f \) using the latest cosmological data.
Large effect at small multipoles.
We get a bound of $O(10^{-4})$ for α_s.

The bound on the α_f is independent of m_ϕ in this range.
The Weak Equivalence Principle (WEP) states that all objects in a uniform gravitational field, independent of the mass or other compositional properties, will experience the same acceleration.

Modern experiments report that the difference between inertial and gravitational masses is zero at the 10^{-13} level. Thus, violations of the WEP in the visible sector are tightly constrained.

However, WEP violation in the Dark Matter sector is far less constrained.
DM sector WEP Violation

- We introduce WEP violation into the dark matter sector by allowing the gravitational charge of dark matter to differ from the inertial mass by a factor of λ_D

$$m_D^{\text{grav}} = \lambda_D m_D$$

- Consequently, if we have two matter particles b_1 and b_2 and two dark matter particles D_1 and D_2, the gravitational forces in terms of the particle inertial masses are

$$F_{b_1,b_2} = -\frac{G_N m_{b_1} m_{b_2}}{r^2}, \quad F_{b_i,D_j} = -\lambda_D \frac{G_N m_{b_i} m_{D_j}}{r^2},$$

$$F_{D_1,D_2} = -\lambda_D^2 \frac{G_N m_{D_1} m_{D_2}}{r^2}.$$
DM sector Effect of dark WEP breaking on the CMB TT Spectrum

\[\eta_D = \lambda_D - 1 \quad \text{Starting Redshift } z_T \]
DM sector **Allowed region for** λ_D **as a function of** z_T

- Using just data from Planck, $\lambda_D - 1$ is consistent with zero at the 10^{-6} level or less for all $z_T \geq 10^3$.

- **Strong correlation with** H_0

Planck+Lensing+HST

$z_T = 10^5 - 1$

Expansion Rate Today H_0 [km s$^{-1}$ Mpc$^{-1}$]

Hubble Parameter M_0 [km s$^{-1}$ Mpc$^{-1}$]
Conclusions

- We used the latest cosmological data to derive a constraint on G_N for all matter at the 2.7% level.

- We use the latest cosmological data to constrain a long range force between dark matter particles at the level of 10^{-4}.

- Using this method, we can constrain WEP in the dark matter sector at the 10^{-6} level or less for all $z_T \geq 10^3$.
THE END
Effect of dark WEP breaking on the CMB EE Spectrum

$$\eta_D = \lambda_D - 1$$

$$\eta_D = -10^{-6}$$

$$\eta_D = 0$$

$$\eta_D = +10^{-6}$$
Effect of dark WEP breaking on the CMB TE Spectrum

\[\eta_D = \lambda_D - 1 \]
\[C_{\ell}^E (\mu K)^2 = \frac{\ell (\ell + 1)}{2\pi} \]
CMB TE Power Spectrum

\[\ell (\ell + 1)/2\pi \] C^E_\ell (\mu K)^2

\(\lambda_G = 0.25 \)
\(\lambda_G = 0.50 \)
\(\lambda_G = 1.00 \)
\(\lambda_G = 1.50 \)
\(\lambda_G = 2.00 \)
Ionization Fraction

- If λ_G is increased (decreased), recombination takes place over a longer (shorter) period of time.