String percolation and the first LHC data

C. Pajares
Department Particle Physics and IGFAE
Universidade Santiago de Compostela

In collaboration with M.A. Braun and V. Vechernin, R. Kolevatov, Y. Shabelski, N. Armesto, J. Dias de Deus, I. Bautista, E. Ferreiro, L. Cunqueiro

Dual year Russia-Spain 2011
Barcelona 8-11 Nov
Outline

- Brief description of string percolation
- dn/dy in pp and Pb-Pb
- Rapidity long range correlations, Ridge in pp and AA
- Elliptic flow in percolation, comparison at RHIC and LHC
 Shear viscosity/entropy in percolation
• **Color strings** are stretched between the projectile and target

• **Strings = Particle sources:** particles are created via sea \(qq \) production in the field of the string

• **Color strings = Small areas** in the transverse space filled with color field created by the colliding partons

• With growing energy and/or atomic number of colliding particles, the number of sources grows

• So the elementary color sources start to **overlap**, **forming clusters**, very much like disk in the 2-dimensional percolation theory

• In particular, at a certain **critical density**, a macroscopic cluster appears, which marks the **percolation phase transition**
(N. Armesto et al., PRL77 (96); J. Dias de Deus et al., PLB491 (00); M. Nardi and H. Satz (98).

- How?: Strings fuse forming clusters. At a certain critical density η_c (central PbPb at SPS, central AgAg at RHIC, central SS at LHC) a macroscopic cluster appears which marks the percolation phase transition (second order, non thermal).

$$\eta = N_{st} \frac{S_1}{S_A}, \quad S_1 = \pi r_0^2, \quad r_0 = 0.2 \text{ fm}, \quad \eta_c = 1.1 \div 1.2.$$
\[\mu_n = \sqrt{\frac{nS_n}{S_1}} \mu_1 ; \quad < p_T^2 >_n = \sqrt{\frac{nS_1}{S_n}} < p_T^2 >_1 \]

Energy-momentum of the cluster is the sum of the energy-momentum of each string.

As the individual color field of the individual string may be oriented in an arbitrary manner respective to one another, \(Q_n^2 = nQ_1^2 \)
- At high densities

\[
< \mu >_n = n F(\eta) < \mu >_1 \quad < p_T^2 >_n = \frac{< p_T^2 >_1}{F(\eta)}
\]

- \(F(\eta) = \sqrt{\frac{1-e^{-\eta}}{\eta}} \), \(\eta = N_S \frac{\pi r_0^2}{S_A} \)

- \(r_0 \) is the transverse size of a single string \(\simeq 0.2 \) fm.
New data: multiplicities

[ALICE: arxiv:1011.3916]

\[\frac{dN_{ch}}{d\eta} \times (0.5/N_{\text{part}})\]

\[v s_{\text{NN}}^{0.15}\]

\[v s_{\text{NN}}^{0.11}\]
\[\frac{1}{N_A} \frac{dn}{dy} |_{N_A N_A} = \frac{dn}{dy} |_{pp} [1 + \gamma(\sqrt{s}) \frac{F(\eta_{N_A})}{F(\eta_p)} (N_A^{1/3} - 1)] \]

at high energy \(\gamma \to 1 \)

\[\frac{1}{N_A} \frac{dn}{dy} |_{N_A N_A} = \frac{dn}{dy} |_{pp} [1 + \left(\frac{N_A}{A} \right)^{1/22} \left(1 - \frac{1}{N_A^{1/3}} \right)] \]

(The shape as a function of \(N_A \) is independent of energy)
Two-Particle Angular Correlations

First surprising result from the LHC:
Observation of Long-Range Near-Side Angular Correlations in pp Collisions

MinBias
(b) MinBias, 1.65GeV/c<\rho<3.0GeV/c

high multiplicity (N>110)
(d) N>110, 1.65GeV/c<\rho<3.0GeV/c

Figure 7
Why Protons?

In String Percolation...

\[\eta_{AA} = \left(\frac{r}{R} \right)^2 \overline{N}^s = \frac{N_A^{4/3}}{N_A^{2/3}} \left(\frac{r}{R_p} \right)^2 \overline{N}_p^s \]

\[\eta_{AA}(s) = N_A^{2/3} \eta_{pp}(s) \quad \text{and} \quad \overline{N} \sim s^{2/7} \]

\[\eta_{PbPb}(\sqrt{s}) \approx 20 \text{GeV} \]

\[\eta_c \approx 1.15 \]

\[\eta_{pp}(\sqrt{s}) \approx 6 \text{TeV} \quad \text{LHC} \]
• As the string density in Au-Au peripheral collisions at 200GeV is the same as in pp high multiplicity events (three times m.b)
If there is a ridge structure in Au-Au at RHIC It should be seen the same structure in pp as it was seen CMS collaboration

L. Cunqueiro, J Dias de Deus and CP
LONG RANGE CORRELATIONS

• A measurement of such correlations is the backward–forward dispersion

\[D^2_{\text{BF}} = \langle n_B \rangle \langle n_F \rangle - \langle n_B \rangle <n_F> \]

where \(n_B(n_F) \) is the number of particles in a backward (forward) rapidity

\[D^2_{\text{BF}} = \langle N \rangle \left(\langle n_B n_F \rangle - \langle n_B \rangle \langle n_F \rangle \right) + \left(\langle N^2 \rangle - \langle N \rangle^2 \right) \langle n_F \rangle <n_B> \]

\[\begin{array}{c}
| B | \\
\Delta \eta \\
| F | \\
\end{array} \]

\(<N> \) number of collisions: \(<n_{1B}> <n_{1F}> \) F and B multiplicities in one collision

• In a superposition of independent sources model, \(D^2_{\text{BF}} \) is proportional to the fluctuations(\(D^2_N \)) on the number of independent sources (It is assumed that Forward and backward are defined in such a way that there is a rapidity window \(\Delta \eta \geq 1.0 \) to eliminate short range correlations).
\[< n_s > = a + b n_p \]

with
\[b = \frac{D_{BF}^2}{D_{FF}^2} \]

- \(b \) in pp increases with energy. In hA increases with A also in AA, increases with centrality.
The dependence of \(b \) with rapidity gap is quite interesting, remaining flat for large values of the rapidity window.
Existence of long rapidity correlations at high density.
Correlation Parameter b

Situation: Symmetrica

\[
\frac{1}{K} \left(1 + \frac{K}{\langle n_F \rangle}\right)
\]

- $1/K$ is the squared normalized fluctuations on effective number of strings (clusters) contributing to both forward and backward intervals.

The height of the ridge structure is proportional to n_k.

\[b = \frac{l}{l + \frac{d}{\left(1 - e^{-\eta}\right)^{3/2}}} \]

low density \(b \to 0 \)

high density (energy) \(b \to \frac{l}{l + d} \)

CGC

\[b = \frac{l}{l + \alpha^2 c} \]

high density (energy) \(b \to 1 \)
As the centrality or the energy increases, Q_s increases, α_s decreases and b increases

(N. Armesto, L. McLerran and C.P; N. Armesto, M. Braun and C.P)
\[\eta_\varphi = \eta \left(\frac{R}{R_\varphi} \right)^2 \]

\[v_2(p_T, y) = \frac{2}{\pi} \int_0^{\pi/2} d\varphi \cos(2\varphi)[1 + \frac{\partial \ln f(p^2_T, \eta, y)}{\partial R^2}(R_\varphi^2 - R^2)] \]

\[= \frac{2}{\pi} \int_0^{\pi/2} d\varphi \cos 2\varphi \left(\frac{R_\varphi}{R} \right)^2 \left(\frac{e^{-\eta} - F(\eta)^2}{2F(\eta)^2} \right) \frac{F(\eta)p_T^2 / \langle p_T^2 \rangle_1}{1 + F(\eta)p_T^2 / \langle p_T^2 \rangle_1} \]

\[v_2 = \frac{2}{\pi} \int_0^{\pi/2} d\varphi \cos(2\varphi) \left(\frac{R_\varphi}{R} \right) \left(\frac{e^{-\eta} - F(\eta)^2}{2F(\eta)^3} \right) \frac{R}{R - 1} \]
ALICE preliminary, Pb-Pb events at $\sqrt{s_{NN}} = 2.76$ TeV
centrality 10%-20%

- π^\pm, $v_2(2, |\Delta\eta|>1)$
- K^\pm, $v_2(2, |\Delta\eta|>1)$
- Ξ^-, $v_2(2, |\Delta\eta|>1)$

-- hydro LHC
(CGC initial conditions)
($\eta/s=0.2$)
\[\eta \approx \frac{4}{15} \varepsilon(T) \lambda_{mpf} \approx \frac{1}{5} \frac{T}{\sigma_{tr}} \frac{s(T)}{n(T)} \]

\[\varepsilon(T) = \frac{3}{4} T s \]

\[\lambda_{tr} = \frac{1}{n \sigma_{tr}} \]

\[\frac{n}{s} \approx \frac{T \lambda_{mpf}}{5} \]

\varepsilon \quad \text{Energy density}

s \quad \text{Entropy density}

n \quad \text{the number density}

\lambda_{mpf} \quad \text{Mean free path}

\sigma_{tr} \quad \text{Transport cross section}
\[
\eta \approx \frac{T \lambda_{mpf}}{s} \frac{1}{5}
\]

\[
\frac{\eta}{s} = \frac{1}{5} \frac{\langle pt^2 \rangle_1}{2F(\xi)} \frac{1}{n \sigma_{tr}}
\]

\[n = \frac{N_{sources}}{\pi R_A^2 L}\]

No of effective sources per unit volume

\[N_{sources} = \frac{(1-e^{-\xi})\pi R_A^2}{F(\xi) S_1}\]

\[n = (1-e^{-\xi})\frac{1}{F(\xi) S_1 L}\]

In percolation

\[T = \sqrt{\frac{\langle pt^2 \rangle_1}{2F(\xi)}}\]

\[F(\xi) = \sqrt{\frac{1-e^{-\xi}}{\xi}}\]

\[S_1 \text{ Single string area}\]

\[N_{sources} \text{ Effective no of sources}\]

\[L = 1 \text{ fm Length of the string}\]

\[\sqrt{\langle pt \rangle_1^2}\]

Average transverse momentum of the single string
\[\sigma_{tr} = S_1 F(\xi) \]

\[\eta \approx \frac{T \lambda_{mpf}}{5} \]

\[n = \left(1 - e^{-\xi}\right) \frac{1}{F(\xi)S_1L} \]

\[\lambda_{mpf} = \frac{1}{n \sigma_{tr}} = \frac{F(\xi)S_1L}{1 - e^{-\xi}} \frac{1}{F(\xi)S_1} \]

\[\eta \approx \frac{1}{s} \frac{L}{5 \left(1 - e^{-\xi}\right)} T \]

\[\frac{\eta}{s} = \frac{1}{5\sqrt{2}} \frac{\sqrt{\langle pt \rangle^2 \xi^{1/4}}}{(1 - e^{-\xi})^{5/4}} L \]

\[\sigma_{tr} \propto \frac{1}{T^2} \]
Conclusions

--- A good agreement with RHIC and LHC data, for dN/dy dependences on energy and centrality.

--- It was predicted rapidity long range correlations and ridge structure in pp at high multiplicity.

--- Good description of v2 at RHIC and LHC including the rapidity dependences.

--- Low ratio shear viscosity/entropy density in the whole energy range RHIC-LHC.