Study of hyperon-hyperon correlations and search for the H-dibaryon with the STAR detector at RHIC

Neha Shah
For the STAR collaboration
University of California Los Angeles

Outline:
- Introduction
- Results and discussions
 - Correlation Function for \(\Lambda\Lambda \)
 - Correlation Function for \(\Lambda \bar{\Lambda} \)
 - Search for \(H \rightarrow \Lambda p\pi \)
- Summary
Heavy Ion Collisions: unique place

- Hadronic physics involving short-lived particles
- Search of exotic particles with multiple strangeness

RHIC: high rate of strange particle production

Hyperon-hyperon interactions:

- Study two particle correlation functions
- Determination of $\Lambda\Lambda$, $\Lambda\Xi$ interactions
- Also possible to study $\Lambda\Omega$, $\Xi\Xi$, $\Xi\Omega$, $\Omega\Omega$ interactions, which are difficult to study @ kaon beam facilities
Measurement of $\Lambda\Lambda$ correlation functions:

- Related to the size r_0 of the emitting region
- no Coulomb interactions
- The two particle Correlation Function (Greiner and Muller, Phys. Lett. B 219 (1989) 199)

$$R(Q) = \lambda \exp(-Q^2r^2)$$

where Q is relative momentum between two particles and λ is degree of incoherence of the source

- Search for H-dibaryon
Six quark state (uuddss)*

Properties: $J^\pi = 0^+$, mass: $(1.9-2.8)$ GeV/c^2

Predicted production rate $\sim 10^{-3} – 10^{-5}$

Recent lattice results on Binding Energy $\sim 20-50$ MeV/c^2 or 13 MeV/c^2

Depending on the mass we have different decay modes of H:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Threshold mass (GeV/c^2)</th>
<th>ΔS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda\Lambda$</td>
<td>2.231</td>
<td>0</td>
</tr>
<tr>
<td>$\Lambda\rho\pi$</td>
<td>2.192</td>
<td>1</td>
</tr>
<tr>
<td>$NN\pi\pi$</td>
<td>2.152</td>
<td>2</td>
</tr>
</tbody>
</table>

* Possible to look with STAR

* Phy Rev Lett 38 (1977) 195
Depletion of phase space due to bound state formation of \(H \Rightarrow \) inclusive measurement, sensitive to total yield

\[\Lambda - \Lambda \text{ correlation with resonance} \]

\[
\begin{align*}
\text{R}(Q) & = P_{\text{res}} = 50 \text{ MeV/c} \\
R_{\text{res}} & = 2.4 \text{ fm} \\
\text{Width} & = 2.7 \text{ MeV}
\end{align*}
\]

\[
\frac{d^2N}{2\pi p_T dp_T dy} (c^2/\text{GeV}^2)
\]

\(N_{\Lambda} = 15 \)

\(N_{\Lambda\Lambda} = 1.52 E-4 \)

Au+Au@200 GeV
y=0 and centrality: 0-5%

*Lie-Wen Chen, 9th Workshop on QCD phase transitions and relativistic heavy ion collisions, China July 18-20, 2011

Greiner and Muller, Phy Lett B 219, 199 (1989)
Previous measurements

$\Lambda\Lambda$ correlations

- Nagara Event (KEK-E373 experiment) : $^6\Lambda\Lambda$He hypernuclei

 \[\Xi^- + {}^{12}\text{C} \rightarrow ^6\Lambda\Lambda\text{He} + ^4\text{He} + t \]

 \[^6\Lambda\Lambda\text{He} \rightarrow ^5\Lambda\Lambda\text{He} + p + \pi^- \]

No deeply bound H

Scattering length

$a_{\Lambda\Lambda} = -0.10^{+0.45}_{-2.35} \pm 0.04$ fm

No bound H/ weakly bound H
STAR detector

\[p \frac{dE}{dx} (\text{GeV}/\text{cm}) \]

\(p \otimes q \) (GeV/c)
Correlation Functions

Correlation Function (CF):

\[CF_{measured}(Q) = \frac{A(Q)}{B(Q)} \]

A(Q) – real pair, B(Q) – pair from mixed event and Q – relative momentum between two particles

Purity correction:

\[CF_{corrected}(Q) = \frac{CF_{measured}(Q) - 1}{PP(Q)} + 1 \]

Pair Purity PP(Q):

\[PP(Q) = \frac{S}{S + B} (p_{Ti}) \times \frac{S}{S + B} (p_{Tj}) \]

S – signal, B – background and \(p_T \) – transverse momentum
$\Lambda \rightarrow p\pi$ ($M = 1.1156 \text{ GeV}/c^2$)
Branching ratio = 63%
Mean Life time: $\tau = 2.63 \times 10^{-10} \text{ s}$
$c\tau = 7.89 \text{ cm}$

Topological cuts:
- DCA_Λ to Primary Vertex < 0.4 cm
- DCA_p to Primary Vertex > 0.6 cm
- DCA_π to Primary Vertex > 1.5 cm
- DCA_p to π < 0.8 cm
- $|M_\Lambda - M_{\text{PDG}}| < 0.004 \text{ GeV}/c^2$

Pair selection cuts:
- $|n_1 \cdot n_2| < 0.98$, where $n = p \times p_\Lambda$
- $|R| > 3 \text{ cm}$, where $R = V_{\Lambda_1} - V_{\Lambda_2}$
* $DCA \rightarrow$ Distance of Closest Approach
Correlation functions for 0-40 % Au+Au collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV

- Inclusive $\Lambda\Lambda$ correlations: Feed down contributions included in theoretical models.

- Type of $\Lambda\Lambda$ interaction:
 - Meson exchange models: Nijmegen model D, F, Soft Core (89, 97)
 - Quark cluster model interaction: fss2
 - Phenomenological model: Ehime

- $\Lambda\Lambda$ interaction \rightarrow Attractive

Fits: A. Ohnishi, HHI Workshop, 2012
$\Lambda\Lambda$ correlation function

- Scattering length (a_o) is negative in most fits

- Current fit from different potential models to data gives indication towards non-existence of bound H-dibaryon

Fits: A. Ohnishi, HHI Workshop, 2012
Λ $\bar{\Lambda}$ correlation function

- Inclusive Λ $\bar{\Lambda}$ correlations

- Λ $\bar{\Lambda}$ correlations \rightarrow clear suppression at low Q

STAR Preliminary

Au+Au $\sqrt{s_{NN}} = 200$ GeV
Search for $H \rightarrow \Lambda p \pi$ (Mass $= 2.192 \text{ GeV}/c^2$)

STAR Preliminary

0-10\% Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$

✓ Expected events $N_H \sim 200$ in the range $M_H < 2M_\Lambda$

✓ No visible signal with respect to mixed event or rotational background
Summary

- The Λ-Λ interaction is attractive

- Current fit to the data for a_0 and r_{eff} gives indication towards non-existence of strong bound state of $\Lambda\Lambda$.

- Preliminary measurement of $\Lambda\bar{\Lambda}$ correlation is presented

- Preliminary measurement of $\Lambda p\pi$ mass spectrum to look for H signal is presented
Search for $H \rightarrow \Lambda p \pi$ ($\text{Mass} = 2.192 \text{ GeV/c}^2$)

- Topological cuts to look for Weak decay $H \rightarrow \Lambda p \pi$

 0.25 cm < Λ dca to PV < 1cm

 Λ decay length > 5 cm

 P π decay length > 3 cm

 $|d_\Lambda| > 3.5$ cm

 $|M_\Lambda - M_{\text{PDG}}| < 0.004$ GeV/c2

 $M_{p\pi} < 1.110$ GeV/c2

 $\theta_\Lambda < 10$ Deg

 $\theta_H < 10$ Deg
H dibaryon production

Blast-wave + Coalescence*

Preliminary

\[N^\Lambda_\Lambda = 15 \]

\[N^\Lambda = 1.52 \times 10^{-4} \]

Au+Au@200 GeV
y=0 and centrality: 0-5%

*Lie-Wen Chen, 9th Workshop on QCD phase transitions and relativistic heavy ion collisions, China July 18-20, 2011