Introduction

Multi-hadrons on the lattice -- the reason why it is so hard --

BB Forces from LQCD

Summary

Strangeness Nuclear Physics from Lattice QCD

T. Hatsuda (Nishina Center, RIKEN)

Univ. Tsukuba S. Aoki, N. Ishii, H. Nemura, M. Yamada, K. Sasaki
RIKEN K. Murano, T. Doi, T. Hatsuda
Nihon Univ. T. Inoue
Tokyo Inst. Tech. Y. Ikeda
Univ. Tokyo B. Charron

T. Hatsuda (Nishina Center, RIKEN)
[1] Introduction

 -- the reason why it is so hard --

[3] BB Forces from LQCD

[4] Summary
Introduction

hadron

1 fm

nuclei

10 fm

neutron star

10 km
HAL QCD Strategy: From QCD to Compact stars

BG/L -> PACS-CS -> T2K -> BG/Q -> KEI
(10TF -> 100TF -> 1PF -> 10PF)

Neutron star:
- max mass, cooling etc

Supernova explosion

Hypernuclei
- Neutron star merger
- max mass, cooling etc

J-PARC (KEK/JAEA)

KEI Computer @ AICS (RIKEN)
(10PFlops)
Advanced Institute for Computational Science (AICS), RIKEN
10 PFlops supercomputer KEI “京” (full operation started on Sep.28, 2012)

Five “strategic” programs (FY 2010-2015)

1. Life and Medicine
2. New Materials
3. Environment
4. Engineering
5. Particle, Nuclear and Astrophysics

Project 1: Baryon-Baryon interaction from lattice QCD simulations at physical point
Project 2: Large scale quantum many-body calculation of nuclei and its applications
Project 3: Realistic simulation of supernova explosion and black-hole formation
Project 4: Large scale simulation of first generation of stars and galaxies

Physical point simulation started : 96^4 lattice, a=0.1fm, L=9.6fm, m_\pi=135MeV
Quantum Chromo Dynamics

\[
\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \bar{q} \gamma^\mu (i\partial_\mu - gt^a A^a_\mu)q - m\bar{q}q
\]

\[G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f_{abc} A^b_\mu A^c_\nu\]

Running masses: \(m_q(Q) \)

<table>
<thead>
<tr>
<th>quark masses (from lattice QCD)</th>
<th>[MeV] (MS-bar @ 2GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_u)</td>
<td>2.19(15)</td>
</tr>
<tr>
<td>(m_d)</td>
<td>4.67(20)</td>
</tr>
<tr>
<td>(m_s)</td>
<td>94(3)</td>
</tr>
</tbody>
</table>

FLAG working group,
arXiv:1011.4408 [hep-lat]

Running coupling: \(\alpha_s(Q) = \frac{g^2}{4\pi} \)

- \(N_f=2+1 \) on the lattice

World average (w/o lattice): 0.1186(11)

\(\alpha_s(M_Z) = 0.1189(4^+6) \)
Physical point simulation in (2+1)-flavor QCD (by PACS-CS Coll.)

Improved Wilson + Iwasaki gauge action; \(a = 0.09 \) fm, \(L=2.9 \) fm, \(m_\pi =135 \) MeV

Baryon force: From phenomenology to 1st principle

- **NN int.:** about 4500 np and pp scatt. data

<table>
<thead>
<tr>
<th>“high precision” NN interactions</th>
<th># of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD Bonn (p space)</td>
<td>38</td>
</tr>
<tr>
<td>AV18 (r space)</td>
<td>40</td>
</tr>
<tr>
<td>EFT in N³LO (nπ+contact)</td>
<td>24</td>
</tr>
</tbody>
</table>

- NNN, YN, YY: data very limited
- YNN, YYN, YYY: none

QCD has only four parameters: $m_u, m_d, m_s, \Lambda_{QCD}$
Multi-hadrons on the Lattice
Multi-hadron Dilemma

\[E \]

- Resonance region
- Scattering region

\(NN\pi \)

\(NN \)
$E_{th} \sim 135$ MeV

$\Delta E \sim 16 \left(\frac{3.2}{L}\right)^2$ MeV
Multi-hadron Dilemma

\[E_{th} \sim 135 \text{ MeV} \]

\[\Delta E \sim 16 \left(\frac{3.2}{L}\right)^2 \text{ MeV} \]

\[e^{-Ht} = \sum_{n} e^{-E_n t} |n\rangle \langle n| \]

Resonance region

Scattering region

\[0 \]

\[\frac{1}{E_{th}} \sim 1.5 \text{ fm} \]

\[\frac{1}{\Delta E} \sim 12 \left(\frac{L}{3.2}\right)^2 \text{ fm} \]

\[\frac{S}{N} \sim \sqrt{N} \exp\left[-2(m_N - 1.5m_\pi)t\right] \]
Solution of the Dilemma: Interaction kernel (=non-local potential)

Resonance region

$1/E_{th}$

~ 1.5 fm

Scattering region

$1/(\Delta E)$

$\sim 12 (L/3.2)^2$ fm
Solution of the Dilemma: Interaction kernel (=non-local potential)

\[\phi_n(\vec{r}) = \langle 0| N(\vec{x} + \vec{r}) N(\vec{x}) | n \rangle \]

\[(k_n^2 + \nabla^2) \phi_n(\vec{r}) = \int U(\vec{r}, \vec{r}') \phi_n(\vec{r}') d^3r' \]

\[\phi(\vec{r}, t) = \sum_{n \leq n_{th}} \phi_n(\vec{r}) e^{-E_n t} \]

\[\left(-\left(\frac{1}{2} \partial_t \right)^2 - m_N^2 + \nabla^2 \right) \phi(\vec{r}, t) = \int U(\vec{r}, \vec{r}') \phi(\vec{r}', t) d^3r' \]

Ishii, Aoki & Hatsuda,
PRL 99 (2007) 022001
PTP 123 (2010) 89

Ishii et al. [HAL QCD Coll.],

Resonance region

Scattering region

\[0 \]

\[1/E_{th} \sim 1.5 \text{ fm} \]

\[1/(\Delta E) \sim 12 \left(L/3.2 \right)^2 \text{ fm} \]
Solution of the Dilemma: Interaction kernel (=non-local potential)

\[\phi_n(\vec{r'}) = \langle 0 | N(\vec{x} + \vec{r'})N(\vec{x}) | n \rangle \]

\[(k_n^2 + \nabla^2)\phi_n(\vec{r'}) = \int U(\vec{r}, \vec{r'})\phi_n(\vec{r'}) d^3r' \]

\[\phi(\vec{r}, t) = \sum_{n \leq n_{th}} \phi_n(\vec{r'}) e^{-E_n t} \]

\[\left(-\left(\frac{1}{2} \partial_t \right)^2 - m_N^2 + \nabla^2 \right) \phi(\vec{r}, t) = \int U(\vec{r}, \vec{r'})\phi(\vec{r'}, t) d^3r' \]

\[U(\vec{r}, \vec{r'}) = m_N V(\vec{r}, \nabla)\delta(\vec{r} - \vec{r'}) \]

\[V(\vec{r}, \nabla) = V_C(r) + S_{12} V_T(r) + \vec{L} \cdot \vec{S} V_{LS}(r) + \{ V_D(r), \nabla^2 \} + \ldots \]

- "Potential" is not an observable but is a nice tool to calculate observables
- "Potential" is volume insensitive (i.e. Lattice Friendly)
Central potential in (2+1)-flavor QCD

PACS-CS gauge config. (Clover + Iwasaki)
a = 0.09 fm, L = 2.9 fm
m_π = 700 MeV

⇒ Physical point simulations (m_π = 135 MeV, L = 9.6 fm) at KEI computer
BB forces from LQCD

- Physical origin of the short distance NN repulsion?
- Fate of the H-dibaryon?
- Effect of the SU(3) breaking?

\[8 \times 8 = 27 + 8s + 1 + 10^* + 10 + 8a \]

Symmetric \quad Anti-symmetric
Lattice BB wave functions (flavor SU(3) limit)

Iwasaki + clover
(CP-PACS/JLQCD config.)
$L = 1.9 \text{ fm}, a = 0.12 \text{ fm}, 16^3 \times 32$
$m_\pi = 835 \text{ MeV}, m_B = 1752 \text{ MeV}$

HAL QCD Coll.

Short range BB int. ⇔ Quark Pauli principle

1 : allowed, 27 : partially blocked, 8s : blocked

(Oka, Yazaki,)
BB potentials (flavor SU(3) limit)

Repulsive core in NN channel

Growing NN tensor force

\[V^{(27)}(r) \]

\[V^{(10^8)}(r) \]

\[V_T^{(10^8)}(r) \]

\[M_{PS} = 1171 \text{ [MeV]} \]
\[M_{PS} = 1015 \text{ [MeV]} \]
\[M_{PS} = 837 \text{ [MeV]} \]
\[M_{PS} = 672 \text{ [MeV]} \]
\[M_{PS} = 469 \text{ [MeV]} \]
NN phase shifts in the SU(3) symmetric world

Stronger attraction in the deuteron channel

HAL QCD Coll.,
BB potentials (flavor SU(3) limit)

- Repulsive core in NN channel
- Attractive core in H channel
H-dibaryon (flavor SU(3) limit)

At physical point:

\[M_{\Lambda\Lambda} < M_H < M_{\Xi N} \]

IHalon QCD Coll.
Just for fun: Neutron star from NN potential in flavor SU(3) limit

EOS with Lattice NN force by BHF calculation \rightarrow M-R relation by TOV equation

Inoue et al. [HAL QCD Coll.] (2012)
Just for fun: Neutron star from NN potential in flavor SU(3) limit

EOS with Lattice NN force by BHF calculation \(\Rightarrow\) M-R relation by TOV equation

Inoue et al. [HAL QCD Coll.] (2012)
SU(3) breaking: coupled channel LQCD

\[
(k_n^2 + \nabla^2) \phi_n^\alpha(\mathbf{r}, t) = \int U(\mathbf{r}, \mathbf{r}')^{\alpha\beta} \phi_n^{\beta}(\mathbf{r}', t) d^3r'
\]

Example: \(S=-1, \ 3S_1, \ I=1/2\) \(\left(m_\pi/m_K = 0.89, 0.8\right)\)

\(\Lambda N-\Lambda N\)
\(\Sigma N-\Sigma N\)
\(\Lambda N-\Sigma N\)

PACS-CS (2+1)-flavor config.
L=2.9 fm

⇒ Parallel V (Oct.4) by K. Sasaki
1. LQCD would replace phenomenological interactions in nuclear physics by 1st principle interactions

2. LQCD results together with nuclear many-body techniques would provide us with a firm basis of nuclear physics from QCD

3. Physical point simulations with a large volume (L=9.6 fm) is started at KEI computer (Kuramashi, Ukita et al.)

4. Necessary equipment to extract physics from LQCD data are ready. (e.g. HAL QCD methodology)
“Lattice Quantum Chromodynamical Approach to Nuclear Physics”
[HAL QCD Collaboration]
Progress of Theoretical and Experimental Physics, (2012) 01A105

- basic concepts of the non-local potential
- central, tensor, LS forces from lattice QCD
- coupled-channel YN, YY forces
- three-body force
- kaon-nucleon interaction
- going beyond the pion threshold

➔ Poster (Oct.2) by K. Murano
➔ Talks at Parallel V (Oct.4) by K. Sasaki and Y. Ikeda