In this talk ...

I will review the role of hyperons on:

- EoS & M_{max} of Neutron Stars
- Properties of Proto-Neutron Stars
- Neutron Star Cooling
- R-mode Instability of Neutron Stars
Some known facts about Neutron Stars

- **Formed in:** type II, Ib or Ic SN
- **Mass:** $M \sim 1 - 2 M_\odot$
- **Radius:** $R \sim 10 - 12$ km
- **Density:** $\rho \sim 10^{14} - 10^{15}$ g/cm3

 \[\rho_{\text{universe}} \sim 10^{-30}$ g/cm3
 \[\rho_{\text{sun}} \sim 1.4$ g/cm3
 \[\rho_{\text{earth}} \sim 5.5$ g/cm3

- **Baryonic number:** $N_b \sim 10^{57}$ ("giant nuclei")
- **Magnetic field:** $B \sim 10^{8...16}$ G ($10^4...12$ T)

0.3 – 0.5G $10^3 – 10^4$ G 10^5 G 4.5x10^5G 2.8x10^7G

You are here!!

Earth Magnet Sunspots Largest continuous field in lab. (FSU, USA) Largest magnetic pulse in lab. (Russia)
- **Electric field**: $E \sim 10^{18} \text{ V/cm}$
- **Temperature**: $T \sim 10^6...11 \text{ K}$
- **Rotational period distribution** → two types of pulsars:
 - pulsars with $P \sim s$
 - pulsars with $P \sim \text{ms}$

 Shortest rotational period: $P_{\text{B1937+2}} = 1.58 \text{ ms}$ until the last discovery: PSR in Terzan 5: $P_{\text{J1748-2446ad}} = 1.39 \text{ ms}$

- **Accretion rates**: 10^{-10} to $10^{-8} \text{ M}_\odot/\text{year}$
Anatomy of a Neutron Star

Equilibrium composition determined by

✓ Charge neutrality

\[\sum_i q_i \rho_i = 0 \]

✓ Equilibrium with respect to weak interacting processes

\[b_1 \rightarrow b_2 + l + \bar{\nu}_l \]
\[b_2 + l \rightarrow b_1 + \nu_l \]

\[\mu_i = b_i \mu_n - q_i (\mu_e - \mu_{\nu_e}) \]
\[\mu_i = \frac{\partial \epsilon}{\partial \rho_i} \]
Hyperons in NS considered by many authors since the pioneering work of Ambartsumyan & Saakyan (1960)

Phenomenological approaches

- Non-relativistic potential model: Balberg & Gal 1997
- Quark-meson coupling model: Pal et al. 1999, …
- Chiral Effective Lagrangians: Hanuske et al., 2000
- Density dependent hadron field models: Hofmann, Keil & Lenske 2001

Microscopic approaches

- $V_{\text{low }k}$: Djapo, Schaefer & Wambach, 2010

Sorry if I missed somebody
Hyperons are expected to appear in the core of neutron stars at \(\rho \sim (2-3) \rho_0 \) when \(\mu_N \) is large enough to make the conversion of N into Y energetically favorable.

\[
\begin{align*}
\mu_n + \mu_e - \mu_\nu & = \mu_\Sigma^- \\
\mu_\Lambda & = \mu_n
\end{align*}
\]

\[n + n \rightarrow n + \Lambda \]
\[p + e^- \rightarrow \Lambda + \nu e^- \]
\[n + n \rightarrow p + \Sigma^- \]
\[n + e^- \rightarrow \Sigma^- + \nu e^- \]

Relieve of Fermi pressure due to the appearance of hyperons \(\Rightarrow \) EoS softer \(\Rightarrow \) reduction of the mass
Measured NS Masses (up to 2006)

Phenomenological: M_{max} compatible with 1.4-1.5 M_\odot

Microscopic: $M_{\text{max}} < 1.4-1.5 M_\odot$
Recent measurements of high masses → life of hyperons more difficult

- **PSR J1903+0327** (Freire et al. 2009)
 - Post-Kelplerian parameters:
 - binary system (P=95.17 d)
 - high eccentricity (ε=0.437)
 - companion mass: ~ 1M_\odot
 - pulsar mass: $M = 1.67 \pm 0.11 M_\odot$

- **PSR J164-2230** (Demorest et al. 2010)
 - Shapiro delay:
 - binary system (P=8.68 d)
 - eccentricity (ε=1.3 x 10^{-6})
 - companion mass: ~ 0.5M_\odot
 - pulsar mass: $M = 1.97 \pm 0.04 M_\odot$
The hyperon puzzle

“Hyperons \Rightarrow “soft (or too soft) EoS” not compatible (mainly in microscopic approaches) with measured (high) masses. However, the presence of hyperons in the NS interior seems to be unavoidable.”

- can YN & YY interactions still solve it?
- or perhaps hyperonic three-body forces?
- what about quark matter?
Even hyperonic 3BF cannot solve the problem

\[1.27 < M_{\text{max}} < 1.6 M_{\odot} \]

See talks of D. Logoteta & K. Tsubakihara (parallel session VIII on Thursday)
Situation not much clear with phenomenological approaches

(Massot et al. 2012)

- χ-LM & QMC
- Hartree-Fock
- $M_{\text{max}} = 1.6 - 1.66 M_\odot$

(Miyatsu et al. 2012)

- RHF & QMC
- π & f_{vB}
- M_{max} compatible with $1.97 M_\odot$

(Weissenborn et al. 2012)

- RMF
- $SU(6) \rightarrow SU(3)$
- Vary $z = g_\phi/g_\sigma$, α_v
- ϕ mesons
- M_{max} compatible with $1.97 M_\odot$

(Bednarek et al. 2012)

- RMF
- σ^4 terms
- σ^*, ϕ mesons
- $M_{\text{max}} > 2 M_\odot$

See talk of J. Schaffner-Bielich (parallel session VIII on Thursday)
Question is so open that …
Hyperon Stars at birth
Proto-Neutron Stars

New effects on PNS matter:

- **Thermal effects**

 \[T \approx 30 - 40 \text{ MeV} \]

 \[S / A \approx 1 - 2 \]

- **Neutrino trapping**

 \[\mu_{\nu} \neq 0 \]

 \[Y_e = \frac{\rho_e + \rho_{\nu_e}}{\rho_B} \approx 0.4 \]

 \[Y_\mu = \frac{\rho_\mu + \rho_{\nu_\mu}}{\rho_B} \approx 0 \]

(Janka, Langanke, Marek, Martinez-Pinedo & Muller 2006)
Proto-Neutron Stars: Composition

- **Neutrino free** \(\mu_\nu = 0 \)
 - Large proton fraction
 - Small number of muons
 - Onset of \(\Sigma^- (\Lambda) \) shifted to higher (lower) density
 - Hyperon fraction lower in \(\nu \)-trapped matter

- **Neutrino trapped** \(\mu_\nu \neq 0 \)

(Burgio & Schulze 2011)
Proto-Neutron Stars: EoS

- **Nucleonic matter**
 - ν-trapping + temperature \rightarrow softer EoS

- **Hyperonic matter**
 - ν-trapping + temperature \rightarrow stiffer EoS
 - More hyperon softening in ν-untrapped matter (larger hyperon fraction)
Proto-Neutron Stars: Structure

(Nucleonic matter)

v-trapping + T: reduction of M_{max}

(Burgio & Schulze 2011)

(Hyperonic matter)

v-trapping + T: increase of M_{max}

To BH

(delayed BH formation)

(I. V. et al. 2003)
Hyperons & Neutron Star Cooling
Neutron Star Cooling in a Nutshell

Two cooling regimes

Slow
Low NS mass

Fast
High NS mass

Core cools by neutrino emission
Crust cools by conduction

Surface photon emission dominates at $t > 10^6$ yrs

I. Core relaxation epoch
II. Neutrino cooling epoch
III. Photon cooling epoch

\[
\frac{dE_{th}}{dt} = C_v \frac{dT}{dt} = -L_\gamma - L_\nu + H
\]

- C_v: specific heat
- L_γ: photon luminosity
- L_ν: neutrino luminosity
- H: “heating”
Neutrino Emission in a Nutshell

<table>
<thead>
<tr>
<th>Name</th>
<th>Process</th>
<th>Emissivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct URCA</td>
<td>$n \rightarrow p + l + \bar{\nu}_l$</td>
<td>$\sim T^6$</td>
</tr>
<tr>
<td></td>
<td>$p + l \rightarrow n + \nu_l$</td>
<td></td>
</tr>
<tr>
<td>Modified URCA</td>
<td>$N + n \rightarrow N + p + l + \bar{\nu}_l$</td>
<td>$\sim T^8$</td>
</tr>
<tr>
<td></td>
<td>$N + p + l \rightarrow N + n + \nu_l$</td>
<td></td>
</tr>
<tr>
<td>Bremsstrah lung</td>
<td>$N + N \rightarrow N + N + \nu + \bar{\nu}$</td>
<td>$\sim T^8$</td>
</tr>
<tr>
<td>Cooper pair formation</td>
<td>$n + n \rightarrow [nn] + \nu + \bar{\nu}$</td>
<td>$\sim T^7$</td>
</tr>
<tr>
<td></td>
<td>$p + p \rightarrow [pp] + \nu + \bar{\nu}$</td>
<td></td>
</tr>
</tbody>
</table>
Hyperonic DURCA processes possible as soon as hyperons appear (nucleonic DURCA requires $x_p > 11-15\%$)

<table>
<thead>
<tr>
<th>Process</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda \rightarrow p + l + \bar{\nu}_l$</td>
<td>0.0394</td>
</tr>
<tr>
<td>$\Sigma^- \rightarrow n + l + \bar{\nu}_l$</td>
<td>0.0125</td>
</tr>
<tr>
<td>$\Sigma^- \rightarrow \Lambda + l + \bar{\nu}_l$</td>
<td>0.2055</td>
</tr>
<tr>
<td>$\Sigma^- \rightarrow \Sigma^0 + l + \bar{\nu}_l$</td>
<td>0.6052</td>
</tr>
<tr>
<td>$\Xi^- \rightarrow \Lambda + l + \bar{\nu}_l$</td>
<td>0.0175</td>
</tr>
<tr>
<td>$\Xi^- \rightarrow \Sigma^0 + l + \bar{\nu}_l$</td>
<td>0.0282</td>
</tr>
<tr>
<td>$\Xi^0 \rightarrow \Sigma^+ + l + \bar{\nu}_l$</td>
<td>0.0564</td>
</tr>
<tr>
<td>$\Xi^- \rightarrow \Xi^0 + l + \bar{\nu}_l$</td>
<td>0.2218</td>
</tr>
</tbody>
</table>

+ partner reactions generating neutrinos, Hyperonic MURCA, …

R: relative emissivity w.r.t. nucleonic DURCA

(Schaab, Shaffner-Bielich & Balberg 1998)
Pairing Gap \Rightarrow suppression of $C_v \& \xi$ by $\sim e^{-\Delta/k_BT}$

- $^1S_0, ~^3SD_1 ~\Sigma N \& ~^1S_0 ~\Lambda N$ gap
 - $n\Sigma^- ~^3SD_1$
 - $n\Sigma^- ~^1S_0$
 - $n\Lambda ~^1S_0$

 (Zhou, Schulze, Pan & Draayer 2005)

- $^1S_0 ~\Lambda\Lambda$ gap
 - $(\text{Balberg} \& \text{Barnea 1998})$
 - $(\text{Wang} \& \text{Shen 2010})$

- $^1S_0 ~\Sigma\Sigma$ gap
 - $(\text{I. V.} \& \text{To l ó s 2004})$
 - NSC97e

 NSC97e
Hyperons & the R-mode instability of Neutron Stars
The R-mode Instability in a Napkin

\(\Omega_{\text{Kepler}} \): Absolute Upper Limit of Rot. Freq.

Instabilities prevent NS to reach \(\Omega_{\text{Kepler}} \)

R-mode Instability: toroidal mode of oscillation

- restoring force: Coriolis
- emission of GW in hot & rapidly rotating NS (CFS mechanism)
 - GW makes the mode unstable
 - Viscosity stabilizes the mode

\[
\frac{1}{\tau(\Omega, T)} = \frac{1}{\tau_{\text{GW}}(\Omega)} + \frac{1}{\tau_{\text{Viscosity}}(\Omega, T)}
\]

\[
A \propto A_0 e^{-i\omega(\Omega) - t/\tau(\Omega, T)}
\]

r-mode unstable due to GW emission

r-mode damped by shear viscosity

r-mode damped by bulk viscosity

\[\tau(\Omega, T) = \tau_{\text{GW}}(\Omega) + \tau_{\text{Viscosity}}(\Omega, T) \]
Hyperon Bulk Viscosity ξ_Y

Sources of ξ_Y:

| Non-leptonic weak reactions | $N + N \leftrightarrow N + Y$
| | $N + Y \leftrightarrow Y + Y$
| | $Y \rightarrow B + l + \bar{\nu}_l$
| Direct & Modified URCA | $B' + Y \rightarrow B' + B + l + \bar{\nu}_l$
| | $N + Y \leftrightarrow N + Y$
| Strong reactions | $N + \Xi \leftrightarrow Y + Y$
| | $Y + Y \leftrightarrow Y + Y$

Reaction Rates & ξ_Y reduced by Hyperon Superfluidity

(Haensel, Levenfish & Yakovlev 2002)
Critical Angular Velocity of Neutron Stars

- r-mode amplitude: \(A \propto A_o e^{-i\omega(\Omega)t-t/\tau(\Omega)} \)

\[
\frac{1}{\tau(\Omega,T)} = -\frac{1}{\tau_{GW}(\Omega)} + \frac{1}{\tau_\varphi(\Omega,T)} + \frac{1}{\tau_\eta(T)}
\]

\[\tau(\Omega_c,T) = 0 \quad \text{r-mode instability region} \]

\[\Omega < \Omega_c \quad \text{stable} \]
\[\Omega > \Omega_c \quad \text{unstable} \]

As expected:
smaller r-mode instability region
due to hyperons

BHF: NN (Av18)+NY (NSC89) (M=1.27M_\odot)
Take away message

Hyperons in Neutron Stars

✓ Strong softening of EoS & reduction of NS Mass
 ➞ Hyperons & Massive NS still an open question
 (Hyperons-NS-2012 Meeting)

✓ Modification of PNS properties (composition, EoS, Mass)

✓ Additional Fast Cooling Processes

✓ Reduction of r-mode instability region
MERCI!
THANK YOU!