Space-based Astronomy and Space Weather

Josep M. Carrasco, Blai Sanahuja and Angels Aran

> **Department of Quantum Physics** and Astrophysics

and Institute of Cosmos Sciences

Coordinator: A. Aran (angels_aran_sensat@ub.edu)

UNIVERSITAT BARCELON

Space-based Astronomy and Space Weather

Objectives:

- I. To acquire the basic concepts of scientific space missions.
 - Technological aspects, scientific drivers, management, requirements and limitations that play a role in the design of a scientific mission.
 - Astronomical observations: review of the results of various recent Missions of ESA and NASA, at different wavelengths (and of future missions scheduled).
- **II.** To understand what Space weather and the heliosphere are.
 - Relevant solar and heliospheric physics phenomena.
 - Effects of solar storms in spacecraft and at Earth.
 Prediction and forecasting.
 - Review of the results of recent solar and heliospheric missions of ESA and NASA.

Program. Part I

Space-based Astronomy

1. Elements of a mission

Orbits. Launch windows. Payloads Subsystems. Launchers

2. Space mission analysis and design

Development phases Analysis.

Selection and implementation The main agencies: ESA and NASA ESA's Cosmic Vision 2015–2025

3. Astronomy from the space

Scientific goals. Missions: Types and Payloads Data bases and exploitation Future missions (JUICE, Euclid, PLATO, etc.)

Program. Part II

Space Weather

1. Space Weather

Effects of solar storms in spacecraft and Earth. Extreme stormy events Prediction. Radiation risks ESA/EU and US programmes

2. Heliospheric physics

Solar wind plasma and interplanetary magnetic field. Earth magnetosphere Solar activity: Flares, Coronal mass ejections and CIRs. Solar activity cycle Solar energetic particles.

3. Heliophysics and space weather missions STEREO, ACE, SDO, PSP, Ulysses, SOHO. Solar Orbiter. Data bases and exploitation. In-situ instrumentation

Space Weather: Definition and Domains

Sun

Space weather is the physical and phenomenological state of natural space environments.

lonosphere

Text-Book Space Weather Storm

- Solar eruptive event:
 - Solar Flares
 - Coronal Mass Ejections (CME)
- Timeline at Earth:
 - 8 minutes: EUV and X-ray emission reach earth:
 - Radio frequency (HF)losses, GPS signal disturbed, , astronauts endangered
 - > 1 hour: energetic particle onset
 - HF loss, GPS signal disturbed, satellites damaged, astronauts endangered
 - > 1-4 days: CME arrives at earth
 - Disturbed GPS signal, Radio communication affected, Polar lights

Shock-and-particle model (SaP)

• The model seeks to reproduce particle intensities and plasma jumps at the observer, to produce predictions of SEP intensities at other locations (e.g., SEPEM).

EVALUATION

From 17th November to 14 January Compulsory attendance

1st Part:

Design an astronomical satellite, simulate a cubesat proposal for a Space Agency

- Oral presentation

2nd Part:

- a) Oral Presentation on a selected topic
- b) Daily questions
- c) Hands-on study on a real Solar

Energetic Particle event

-Paper Presentation (~5 pages)

BIBLIOGRAPHY

<u>1st Part:</u>

- "Space mission analysis and design", Wiley J. Larson & James R. Wertz, Ed. Kluwer, 1992
- "Spacecraft systems engineering", Peter Fortescue & John Stark, Ed. Wiley, 1991
- "Orbital motion", A.E. Roy, Ed. Hilger, 1978

2nd Part:

- Introduction to Space Physics. M.G. Kivelson and C.T. Russell (Cambridge University Press, 1995)
- Heliophysics. Space Storms and radiation: causes and Effects. C.J Schrijver and G.L. Siscoe (Cambridge University Press 2010; www.cambridge.org/9780521760515)
- Kallenrode, May-Britt. Space physics : an introduction to plasmas and particles in the heliosphere and magnetospheres. 3rd ed. Berlin : Springer, 2004
- Physics of Space Storms. From the Solar Surface to the Earth. H. E. J. Koskinen (Springer Praxis, 2011). ISBN 978-3-6-00310-3