In this thesis, you will make predictions for the forthcoming measurements of baryon form factors by the HADES collaboration [1].
The project can be carried in Barcelona and/or remotely with weekly Zoom meetings with the supervisor.
In this thesis, you will make predictions for the forthcoming measurements of baryon form factors by the HADES collaboration [1].
The project can be carried in Barcelona and/or remotely with weekly Zoom meetings with the supervisor.
The sensitivity of the rare decays η/η'→π0γγ to signatures of Beyond the Standard particles in the MeV-GeV mass range will be analyzed in this work.
A neutron star merger is a highly dynamical system in which the four fundamental forces of nature—electromagnetic, weak, strong, and gravitational—play significant roles. This makes it an intriguing laboratory for studying fundamental physics, which can be explored experimentally through both gravitational and electromagnetic waves. To model this system, instead of solving quantum chromo
In this thesis, you’ll develop a model describing the photoproduction of tensor mesons based on the model from Ref. [1] and the data from Refs. [2-4]. You will learn some standard techniques and theories used in particle physics such as the helicity formalism, the decomposition into partial waves, the S-matrix (or scattering) theory and Regge theory.Â
In this thesis, you will develop a model for a strange cascade, that is, a reaction in which several baryons containing strange quarks are produced. The GlueX collaboration (Hall D at the Thomas Jefferson Lab) is exploring the possibilities of setting up a polarized proton target [1]. A polarized target could potentially help in the determination of the quantum numbers of the produced strange baryon.
When the densest stars in the universe (neutron star or neutron star-black hole pairs) orbit each other, they get closer due to emitted gravitational radiation. Neutron stars have a solid exterior crust that may shatter in this extreme encounters. In this project, you will explore whether the star can shatter like a glass does when a singer hits its resonant note. This depends on the properties of dense matter and, in particular, on the symmetry energy parameter that is predicted from nuclear physics.
The Standard Model of Cosmology, the so-called ΛCDM model [1], is afflicted by
The solution of quantum field theories is one of the most challenging topics in modern theoretical physics. Recently, promising advances have relied on the use of variational approaches that exploit machine learning techniques [1]. These approaches encode the gauge symmetries in the architecture of neural networks [2], which provides advantages with respect to other sampling techniques [3]. Variational solutions to quantum field theories can be then exploited to find numerical solutions to these problems [4]. Â
The quark-gluon plasma is a new state of matter that can be formed by colliding heavy ions at ultrarelativistic velocities. From all the particles formed in these collisions, heavy quarkonium is one of the most promosing probes to obtain information about this new state of matter. One of the most succesful approaches to the study of the evolution of quarkonium in a medium is to model it as a Markovian open quantum system. Recently, it has been found using this approach that regeneration is crucial to reproduce experimental data on quarkonium excited states.